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والمسوحات الهيدروغرافية. وقد وفرت صور الأقمار الصناعية تغطية واسعة النطاق وقياسات قياس الأعماق مهم للعديد من الأنشطة مثل تطبيقات الهندسة الساحلية    الملخص:

ساحل البحر  ب  لتقييم ثلاثة نماذج لحسابات العمق في منطقة جمشة  2-سينتينال عمق منخفضة التكلفة وفعالة من حيث الوقت. في هذه الدراسة، تم استخدام بيانات الصور الفضائية

، وخوارزميات تعزيز  (GAM) ، وخوارزميات النموذج الإضافي المعمم (ANN) ساحل خليج السويس. النماذج هي خوارزميات الشبكة العصبية الاصطناعية  يالأحمر عل

الأقصى الصناعية سنتي  (XGBOOST). التدرج  الأقمار  الساحلية من صور  المناطق  في  الأعماق  قياس  للحصول على خرائط  المستخدمة  انعكاس    تستخدما  2-نالالنماذج 

تبلغ   R² مترًا و  0.848تبلغ   RMSE قيمة (GAM) ، ونتج عن0.948تبلغ   R² مترًا و1.054تبلغ   RMSE قيمة  (ANN)  عن  النطاقات الحمراء والخضراء والزرقاء. نتج

ونتج  0.966 و  0.942تبلغ   RMSE قيمة    (XGBOOST)عن  ،  حقق  0.981تبلغ   R² مترًا  الدراسة.  منطقة  المجموعةعلى  بين (EM) نموذج  يجمع   و  GAM الذي 

XGBOOST قيمة RMSE    مترًا و  0.296تبلغ R²   مما يدل على الدقة المحسنة لتقنيات التعلم الآلي في رسم خرائط قياس الأعماق0.966تبلغ ،. 

 .نموذج المجموعة؛ قياس الأعماق؛ التعلم الالي؛ 2-سينتينال: ةمفتاحيالكلمات ال

 
Abstract. Bathymetry is crucial for a variety of tasks, including hydrographic surveys and coastal engineering applications. The use of 

satellite images has made depth measurements quick, inexpensive, and widely available. Three models were evaluated in the current 

study for depth estimations in Jemsha, Red Sea Coast, the Gulf of Suez Coastline using Sentinel 2 satellite image data.. The models are 

Artificial Neural Network (ANN) algorithms, Generalized Additive Model (GAM) algorithms, and eXtreme Gradient BOOSTing 

(XGBOOST) algorithms. Models used to obtain bathymetry maps in coastal regions from sentinel-2 satellite images using red, green 

and blue bands reflectance. ANN resulted in RMSE 1.054 m and R² 0.948, GAM produced RMSE 0.848 m and R² 0.966, and XGBOOST 

produced RMSE. 0.942 m and R² 0.981 over the study area. An Ensemble Model (EM) combining GAM and XGBOOST achieved an 

RMSE of 0.296 m and R² of 0.966, demonstrating the enhanced accuracy of ML techniques in bathymetric mapping. 

Keywords: Sentinel-2, Bathymetry, Machine learning, Ensemble Model. 

1. Introduction 

For a variety of purposes, such as resource management and environmental monitoring, accurate bathymetric measurement 

is crucial in aquatic environments. Nonetheless, certain regions provide difficulties since they are hard to reach with 

conventional bathymetry techniques. The current research investigates the inference of bathymetry with Sentinel-2 satellite 

imagery and machine learning techniques. Since water makes up the majority of the Earth's surface, bathymetric mapping 

requires precise depth measurement. Although it requires a lot of time and money, classical hydrographic surveying with 

echo-sounders remains the most precise mapping technique for ocean floor and determining bathymetry [1]. Accurate 

seabed mapping is necessary for geoenvironmental studies, monitoring subsea power cables, and infrastructure 

development [2]. For safe maritime transit and navigation, especially in coastal and shallow water areas, up-to-date 

geospatial data is crucial. Accurate seabed knowledge is necessary for safe operations in ports, waterways, and jetties due 

to the dynamic nature of the seabed and potential threats from sedimentation. This highlights the importance of regular 

monitoring [1,3]. 

Conventional hydrography studies provide challenges, particularly in vast areas and coastal places where extensive and 

costly fieldwork is needed [2,3]. Coastal zones may have disruptions to continuous hydrography due to the seasonal 

monsoon system, making it challenging to maintain frequent surveys in certain areas. Complexity and potential risk are 

increased when shorelines, ecosystems, and environs are explored in rocky-cliff zones utilising sounding boats. However, 

remote multispectral sensors aboard satellites offer a cost-effective solution for continuous earth observation and shallow 

water bathymetry, with revisit intervals of a few days or weeks [4, 5], [6]. Since going into operation in 2014, Sentinel-2 

has been taking pictures in 13 different electromagnetic spectrums and releasing the images publicly with a 10-day revisit 

interval and a 10-to 60-meter spatial resolution. Similarly, a nine-band dataset having a 16-day temporal resolution and a 
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saptial resolution of 15–30 meters is offered by Landsat-8 OLI, which has been in operation since 2013. The relationship 

between electromagnetic properties and light penetration allows bathymetry to be estimated from satellite data, especially 

Sentinel-2 and Landsat-8 [6, 7]. 

Among the satellite sensors whose bathymetry estimation has been assessed are SPOT6, Sentinel-2, Landsat-8, and 

IKONOS. The parameters that impact the accuracy of remote sensing data include the reflection of water surface, 

atmospheric impacts, the reflection of sun, depth range, water quality, image pixel size, seabed characteristics, and sample 

placements [2, 3, 8]. By using complex algorithms, water reflectance ratio models, and radiometric correction methods to 

overcome issues with satellite-derived bathymetry, researchers have drawn attention from the scientific community [9]. 

Artificial Neural Networks (ANN), Random Forests (RF), and Support Vector Machines (SVM) are examples of machine 

learning (ML) and statistical techniques that have shown efficacy in the efficient analysis of multi-dimensional satellite 

datasets for tasks like image classification and bathymetry obtained from satellites. [2, 5, 8]. While a number of machine 

learning techniques have demonstrated potential for obtaining depth data in transparent and shallow waters, further 

investigation is required to improve the precision and stability of the depth of water retrieval when utilizing complex 

algorithms such as the GBM, Catboost, and XGboost models. Machine learning algorithms' inherent "black box" nature 

has made interpretability and explainability necessary, necessitating the development of eXplainable artificial intelligence 

(XAI) [4,8,10]. 

In the current study, high-resolution satellite data from Sentinel-2 is used to evaluate bathymetry using potent machine 

learning approaches (ANN, GAM, and XGBOOST). To verify accuracy, these approaches' performance is contrasted with 

field bathymetric data. 

2. Study Area and Data Sources 

2.1. Area of Study 

Located in the Gulf of Suez and along the Red Sea coast, the study site is about 60 kilometres from Hurghada and near to 

Jemsha, Egypt. It's a tourist location and a tiny bay. There is an oil refinery and oil field nearby, which occasionally results 

in oil leaks. The location is depicted in fig.1. The coordinates are as follows: Latitude: 27°38'N to 27°39'N; longitude: 

33°33'E to 33°35'E. 

 
Fig.1: The Study Area Location: Jemsha, Gulf of Suez Coastline, Red Sea Coastline. 

2.2. Satellite Data 

The bathymetry data needed for the current study was obtained using an image from the Sentinel-2 satellite. August 2022 

time scenes that were nearest to each other were chosen. 
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2.2.1 Sentinel-2 Image 

Sentinel-2 Level 2A spacecraft processes images to give surface reflectance data and correct for air factors. They can be 

useful for mapping land cover, monitoring vegetation, assessing water quality, and disaster management, among other 

applications.  

The data used in this investigation came from [11]. 

2.3. Field Data (Echo Sounder) 

As part of a field campaign to map the coastal and marine areas, which extend up to 200 meters from the shoreline, modern 

bathymetry and sonar equipment has been deployed in the Jemsha region to ascertain the topography and depth of the sea 

floor for the study area. This map is shown in fig 2. 

A depth gradient is depicted on the bathymetric map, with a maximum depth of eighteen meters. The tongue region is 

particularly shallow, with depths between one and two meters. This region's sea floor is level and devoid of notable 

topographical features. Additional examination indicates that the topography is unclear, and that the bottom edge grows 

noticeably steeper beyond 7 meters, creating a deep area that runs parallel to the shoreline. 

 

 
Fig. 2: Jemsha Field Bathymetric Map. 

3. Methodology 

3.1.  Bathymetric Extraction Workflow Steps 

The steps below were used to get bathymetry using machine learning approaches: 

1 - Sentinel-2 Level 2A corrected reflectance images provided three inputs, which were used to train all approaches at the 

same field measurement point position. The logarithms of the red, green, and blue bands which represented the detected 

water depths were the outputs. 

2 - These values were randomly split into independent 80% training and 20% testing points for the study area.  

3 - In the end, the same independent testing points based on RMSE and R2 values were used to evaluate all results from 

different methodologies. 

The workflow for the bathymetry detection steps is shown in fig. 3. 
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Fig. 3: Workflow of Study Area Bathymetry Detection Steps. 

3.2. Machine Learning Models for Extracting Bathymetry 

The current work used three supervised learning techniques to map bathymetry. These advanced Machine Learning (ML) 

techniques, include ANN, GAM, and XGBOOST for satellite-derived bathymetry, are briefly described after. 

3.2.1 Artificial Neural Network (ANN) 

Layers of artificial neurones, known as units, contribute to artificial neural networks (ANNs).  Depending on the complexity 

needed to uncover hidden patterns in the dataset, these layers can have a number ranging from few units to millions.  An 

ANN normally consists of an output layer, hidden layers, and an input layer.  The output layer gives the network's answer 

after the input layer receives data that has been altered by the hidden layers [12]. 

Units in neural networks are interconnected, with each connection having weights that influence the units. As data transfers 

between units, the network learns and produces an output [13]. 

This research uses the Multilayer Feed-Forward (Multilayer Perceptron, MLP) Neural Network Algorithm, a supervised 

approach for mapping input to output data [14]. MLP has three parts: input layers (multispectral image band values), hidden 

layers (training process), and output layers (bathymetric information). A hypothetical example of an MLP with 4 input 

layers, 5 hidden layers, and 1 output layer (4-5-1) is shown in fig. 4. 

 
Fig.4 Hypothetical example of a Multilayer Perceptron Network. 

For Calibration, Use Ground Bathymetry 

Sentinel 2 L2A Image 

Multispectral Bands 

Algorithms for Bathymetry Training 

Bathymetry Approaches 

XGBOOST RMSE and R2 Evaluation ANN GAM 

Evaluation of RMSE and R2  Bathymetry Map  

GAM + XGBOOST 

Ensemble Model 

https://www.google.com/imgres?imgurl=https://www.researchgate.net/profile/Mohamed_Zahran6/publication/303875065/figure/fig4/AS:371118507610123@1465492955561/A-hypothetical-example-of-Multilayer-Perceptron-Network.png&imgrefurl=https://www.researchgate.net/figure/A-hypothetical-example-of-Multilayer-Perceptron-Network_fig4_303875065&docid=pmW4FfI5q31GNM&tbnid=iWSQWPgXbwqPIM:&vet=10ahUKEwjniJzeyajiAhVMVBUIHY7UAdcQMwg_KAAwAA..i&w=715&h=503&hl=en&gl=uk&bih=651&biw=1366&q=A%20hypothetical%20example%20of%20Multilayer%20Perceptron%20Network&ved=0ahUKEwjniJzeyajiAhVMVBUIHY7UAdcQMwg_KAAwAA&iact=mrc&uact=8
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Rectified Linear Unit (ReLU) activation functions are used for hidden layers, and a linear activation function is used for 

the output layer. ReLU, defined as f(x) = max (0, x), is effective in preventing the vanishing gradient problem [15]. The 

linear activation function for the output layer is f(x) = x [16].   

The Adam optimizer was used for updating weight and bias values, combining RMSprop and momentum methods. It 

maintains two moving averages: the first moment (mean) and the second moment (uncentered variance) of the gradients. 

The equations for Adam are listed (from (1) to (5)): 

• Compute gradients of the loss function. 

• Update biased first moment estimate in Equation 1 

      mt = β1⋅mt−1+(1−β1)⋅gt     (1) 

• Update biased second raw moment estimate in Equation 2 

vt = β2⋅υt−1+(1−β2)⋅𝑔𝑡
2                     (2)                                                        

• Bias-corrected first moment estimate in Equation 3 

ḿt = 
𝑚𝑡

1−𝛽1
𝑡       (3)                                                                                    

• Bias-corrected second raw moment estimate in Equation 4 

ὺt = 
𝜐𝑡

1−𝛽2
𝑡        (4)                                                                    

• Update parameters in Equation 5 

ɷt+1 = ɷt − 
𝜂

√ὺ𝑡 + 𝜖
 ⋅mt                                                      (5)                                                    

These equations update the network's weights and biases using the Adam optimization algorithm. All algorithms and 

statistical analyses were implemented in Python. 

 3.2.2. Generalized Additive Model (GAM) 

By permitting nonlinear interactions between the dependent and independent variables, a Generalised Additive Model 

(GAM) expands on linear regression. Unlike linear regression, which assumes a linear relationship, GAMs use smooth 

functions to capture complex relationships [17].  

The general form of a GAM is as shown in Equation 6: 

Y = β0 + f1(X1) + f2(X2) +…+ fp (Xp) + ϵ                 (6) 
where: The dependent variable, or response, is Y, X1, X2…, Xp are the independent variables (predictors), The term that 

intercepts is β0, f1, f2…, fp are smooth functions of the predictors and ϵ represents the error term [18]. 

In a GAM, each predictor Xi is associated with a smooth function fi (Xi), modelled using techniques like splines, local 

regression, or kernel smoothing. These smooth functions capture nonlinear relationships, making GAMs highly flexible. 

The smooth functions fi (Xi) are often estimated using penalized regression techniques, such as penalized splines or 

generalized cross-validation, to prevent overfitting and ensure interpretability [19]. The degree of smoothness is controlled 

by tuning parameters or penalties, selected using techniques like cross-validation. 

GAMs are widely used in fields like epidemiology, environmental science, and econometrics, where relationships between 

variables may be nonlinear or non-monotonic [18].  

They provide a powerful framework for modelling complex data relationships while maintaining interpretability and ease 

of use.These algorithms and statistical analyses were implemented in Python. 

3.2.3. Extreme Gradient Boosting (XGBOOST) 

EXtreme Gradient BOOSTing (XGBOOST), is understood through its mathematical formulation, particularly its 

optimization objective and update algorithm.Objective Function [20]: XGBoost minimizes a regularized objective 

function combining a loss function with regularization terms, as shown in Equation 7: 

Obj(θ) = ∑ 𝑙𝑜𝑠𝑠(𝑦𝑖  , ӯ𝑖)
𝑛
𝑖=1    + ∑ 𝛺(𝑓𝑘 )

𝐾
𝑘=1                                   (7) 

where: Obj(θ) is the overall objective function, θ represents model parameters, n denote to the number of training instances, 

yi is the true label, ӯi  is the predicted label, loss , 𝑙𝑜𝑠𝑠(𝑦𝑖  , ӯ𝑖) measures the difference between true and predicted labels, 

K is the number of trees and Ω (fk) is the regularization term. 

Loss Function [21]: The loss function depends on the problem type (e.g., regression), commonly using Squared Loss 

(MSE) for regression: loss 𝑙𝑜𝑠𝑠(𝑦𝑖  , ӯ𝑖) = (𝑦𝑖 −  ӯ𝑖)
2. 

Regularization Terms: To manage model complexity, XGBOOST uses L1 (Lasso) and L2 (Ridge) regularisation: 



Bathymetry Derived Using Machine Learning Techniques from Sentinel-2 Satellite Imagery of The Jemsha 

Region on The Red Sea Coast, Rania et al. 

30 
CERM. Vol.,46. 2025 

• L1 Regularization (Lasso): Ω(fk) = λ1∑ ∣ 𝑤𝑗 ∣𝑇
𝑗=1 . 

• L2 Regularization (Ridge): Ω(fk)=λ2 ∑ 𝑤𝑗
2𝑇

𝑗=1 . 

where:  λ1 and λ2 are the regularization parameters, T is the number of leaves in the tree, wj are the weights associated 

with each leaf. 

Tree Update: In each iteration, a new tree is added, and leaf weights are updated to minimize the objective function. Optimal 

leaf scores are calculated as in Equation 8: 

𝛾𝑗
∗= − 

𝐺𝑗

𝐻𝑗+ 𝜆2

                                                                (8) 

Where: 𝛾𝑗
∗ is the optimal weight for the j-th leaf, Gj and Hj are the loss function's first and second-order gradients in relation 

to the forecasts at the j-th leaf, respectively. 

These equations illustrate XGBOOST's combination of gradient boosting and regularization to build robust predictive 

models. XGBOOST is a powerful tool for accurate predictive modelling, implemented in Python for statistical analysis. 

3.2.4. Ensemble Model (EM) 

EXtreme Gradient BOOSTing (XGBOOST) and the Generalized Additive Model (GAM) were combined to improve 

accuracy because these two models produced the best results when bathymetry was estimated from multispectral satellite 

pictures. 

4. Results 

In the current study, bathymetry was estimated using three machine learning techniques and an ensemble model approach 

using high-resolution data from Sentinel-2 satellites. Below are the outcomes of several machine learning approaches, 

including ANN, GAM, XGBOOST, and EM. 

The precision of the employed methods can be summed up as follows: 

ANN, GAM and XGBOOST give RMSE values of 1.054 m, 0.848 m, and 0.942 m, and R2 of 0.948, 0.966 and 0.981, 

respectively. 

To further optimize accuracy, the advantages of the GAM and XGBOOST were combined to produce an Ensemble Model 

(EM). The findings of this ensemble model indicated improved accuracy, a reduced RMSE of 0.296 m, and an R2 of 0.966, 

proving the value of combining models for depth inference while taking measurements of depth in coastal areas. 

4.1. Depth Estimation 

The ANN uses ReLU activation to avoid vanishing gradients and a linear function in the output layer after being trained 

with the Levenberg-Marquardt back-propagation function with ten hidden layers. The Adam optimizer, combining 

RMSprop and momentum methods, updates network parameters iteratively, enhancing training convergence. The GAM 

forecasts depths from satellite data using smooth functions of predictors and an error term, with smoothing controlled by 

the lambda parameter. A lambda of 0.1 to 1.0 and 20 splines per feature balance complexity and overfitting, with values 

between 10 to 50 being reasonable depending on data complexity. The XGBOOST algorithm limits the number of boosting 

rounds to 100 and uses step size shrinkage to prevent overfitting. At a lower number, the model is more resilient, but 

additional boosting cycles are required. The value of it is 0.1.  

However, the lowest Root Mean Square Error (RMSE) and the highest correlation coefficient-squared (R2) values were 

taken into consideration when choosing the parameters of each algorithm. Higher R2 and lower RMSE indicate a better fit 

between the model and the data. Python was the programming language used for all statistical analysis and procedures. 

While the estimation and bathymetric maps for each model are shown in Figs. 5 and 6, respectively, Table 1 briefly presents 

the associated values of RMSE and R2. 
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Fig. 5 Constantly Fitted Models for Machine Learning Model Techniques. 

 
Fig.6 Bathymetric Map Utilizing Machine Learning Modeling Techniques. 
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Table 1: RMSE and R2 for the Study Area's Bathymetric Value Checking Parameters 

Methodology ANN GAM XGBOOST EM 

RMSE (m) 1.054 0.848 0.942 0.296 

R2 0.948 0.966  0.981  0.966  

 

5. Discussion 

The comparison between the algorithms of the red, green, and blue bands was the most insightful addition to the present 

study. The final results are summarized as follows: 

In ANN, trained with the Levenberg-Marquardt back-propagation function and featuring ten hidden layers, uses ReLU 

activation to avoid vanishing gradients and a linear function in the output layer. The Adam optimizer, which merges 

RMSprop and momentum methods, updates network parameters iteratively to improve training convergence. 

In GAM predicts depths from satellite data by using smooth functions of predictors and an error term, with smoothing 

adjusted by the lambda parameter. A lambda range of 0.1 to 1.0 and 20 splines per feature balance complexity and 

overfitting, with 10 to 50 splines being reasonable based on data complexity. 

The XGBOOST algorithm limits the number of boosting rounds to 100 and use step size shrinkage to prevent overfitting. 

A typical value of 0.1 indicates that the model is more robust at lower values, but more boosting rounds are required. 

Finally, to improve overall predictive performance, the EM approach demonstrates how to build an ensemble by combining 

predictions from XGBOOST and GAM. According to the findings, XGBOOST and GAM outperform ANN in the 

researched field in terms of accuracy. 

6. Conclusions And Recommendations 

Current research demonstrates the potential of using Sentinel-2 satellite imagery and machine learning algorithms to infer 

water depths in coastal areas. 

The results of the Ensemble Model (EM) used in the study indicated improved accuracy, demonstrating the importance of 

integrating machine learning models with superior results for inferring depth when be measured in coastal areas. 

Further research and validation in other aquatic environments are recommended to improve the flexibility and applicability 

of the proposed approach. 
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