A Proposal to Estimate an Appropriate Metro Headway Through Weekly Passengers' Flow Data

A.A. Mohammed ${ }^{1}$, H.S. Riad ${ }^{2}$, M.Y.Mohsen ${ }^{3}$
(1) Civil Engineer.
(2) Associate Professor of Railway Engineering Public Works Department Faculty of Engineering Ain Shams University.
(3) Assistant professor of Railway Engineering Public Works Department Faculty of Engineering Benisuef University.

الملخص العربي:

مترو أنفاق القاهرة الكبرى هو أول خط مترو في الوطن العربي وقارة أفريقيا ويعتبر واحدا من أهم وسائل النقل في المدينة، فهو يوفر وسيلة سريعة وفعالة للتنقل لملايين الركاب يوميا. ومع ذلكّ، يظهر جدول التثثغيل الحالي أحيانا
 على طول الرصيف أو داخل عربات المترو، مما يمكن أن يثير مخاوف اللملامة. يهلف هذا البحث إلى تقدير فترة
 التلقائية. في هنا البحث، قمنا بطرح وسيلة مبتكرة لإنشاء مصفوفة الأصل والّوجهة لثببكة المترو، والتي من خلالّلها

تمكنتا من معرفة كثافة الركاب في الحالات التّالية (على الرصيف، عند الأبواب، داخل عربات قطار المترو). وبالتلالي تمكننا التأكد من تحقيق الثشروط الآتية:
ـ كثـافة الركاب على الرصيف لا تزيد عن 2 راكب / المتر الطولي.

- زمن التوقف لا يزيد عن 30 ثانيـهـ

ـ كثثافة الركاب داخل عربات قطار المترو لا تزيد عن 7 راكب/المتر المربع ولا تقل عن عن 3 راكب / المتر المربع . ومن خلال تحقيق الاشتراطات السابقة تمكنتا من الحصول على فترة زلمنـي المستمر و المتزايد من الركاب.

الكلمات المفتّاحية:
زمن تقاطر المترو، آلة التذاكر الأوتوماتيكية، بيانات الركاب الأسبوعية، عدد الركاب في كل رحـة، طريقة نموذج الجاذبية، مصفوفة الركاب [O-D]، كثافة الركاب على (الرصيف، أمام أبواب المترو، وداخل عربات المترو).

Abstract

: The Greater Cairo Underground Metro is one of the most important modes of transportation in the city, providing a fast and efficient means of travel for millions of passengers every day. However, the current schedule doesn't always comply with the passengers' fluctuations, leading to overcrowding and delays. In addition, passengers are not uniformly distributed along the platform or into the metro cars, which can lead to safety concerns. To address these issues, this research paper aims to estimate a suitable metro headway through the weekly passengers' flow data which obtained from the automatic ticket machine. In this research we proposed an innovative way to create an origin destination [OD] matrix for the metro network, through which it is possible to obtain an appropriate metro headway commensurate with the continuous and increasing demand for passengers.

Keywords:

Metro Headway, Automatic Ticket Machine, Weekly Passengers, passengers per trip, Gravity Model Method, [O- D] passenger matrix, Passenger density on (the platform, within the metro doors, and inside the metro cars).

Introduction:

Due to its multiple advantages, the Underground Metro is considered one of the most attractive means of transportation for passengers, therefore, it has a huge crowdedness specially at peak hours, for that it requires a lot of research and studies namely in large heavily populated cities. From this point of view, it's important to investigate the Optimal Operation of Greater Cairo Underground Metro (GCUM) taking into consideration safety and economy.

The research is driven by four key questions:

1. Estimating a suitable headway: Using detailed passenger flow data, we aim to establish a dynamic headway system that adapts to fluctuations in ridership throughout the week and across different times of day, ensuring efficient service while minimizing wait times.
2. Adapting to rising passenger numbers: The current schedule often falls short of accommodating the rapid surge in ridership. We explore solutions for optimizing existing infrastructure and scheduling to keep pace with this ongoing growth.
3. Prioritizing passenger safety: In crowded stations and trains, safety concerns become paramount. This research investigates measures to enhance passenger security and minimize risks associated with increased traffic.
4.Balancing economics and passenger needs: Achieving a financially sustainable Metro operation is crucial. We analyze how headway adjustments can contribute to economic feasibility while still prioritizing passenger comfort and safety.

Our hypotheses provide the foundation for our investigation:

-The proportionality of headway to passenger numbers suggests a dynamic approach to scheduling based on real-time demand.
-The gravity model helps us understand passenger distribution patterns across stations, informing platform design and resource allocation.
-Variations in platform and train car densities highlight the need for targeted solutions to optimize passenger flow and minimize congestion.
-Passenger behavior has a significant impact on operational efficiency. We assess strategies for mitigating behavioral delays and ensuring smooth platform and train movement.

Cairo is the most extensive city in both Africa and the Middle East, has been the capital of Egypt for more than a millennium. It stands as a crucial political and cultural focal point within the region [1], which suffers from unplanned growth
due to the high rate of both birth [2] and internal immigration [3],[4]. The present Greater Cairo metro network (GCUM) consists of three lines with a total length of about 96 km [5]. It is considered as the rapid transit system in Greater Cairo, Egypt [6]. It was the first of two full-fledged metro systems in Africa and four in the Arab world [7] .
This research paper is structured as follows: the second section is the literature review, we focused on previous studies, where we presented some local and international studies that closely related. In the third section, we reviewed the methodology and the case study, which is the peak hour scenario. This section was divided into three subsections: data collection, solution model, and finally analysis \& results. Following that the fourth section was dedicated to extracting the conclusions.

Literature Review:

Eldeeb et al., 2018 [8] proposes a study on optimal metro operation that deals with optimizing optimal operation interaction for GCUM 1st and 2nd lines by proposing a methodology based on a field survey of travel time, actual headway, passenger waiting time, alighting, and boarding passengers. There are some shortages for the field survey as the data are collected during only one trip by counting the passengers who boarded or alighted from only one door for only one car, Accordingly, these records cannot be precisely utilized as a method to analyze the metro operation.

Another study reports by Eldeeb et al., 2019 [9] the results based on only one-day records. This can't be considered as a general case to be applied as they could cause misconceptions as regards the variations from day to another. Hence, it becomes crucial to consider the outputs of the Automatic Ticket Machine, capturing weekly, and daily passenger traffic from entry to exit at all stations. These accurate results will provide indispensable data for conducting an in-depth analysis of the phenomena and drawing appropriate conclusions regarding the optimal headway and important predictive recommendations.

For international studies: Wang et al., 2017 [10] This research investigates the use of metro smart card data to model the location choice of after-work activities for metro commuters in Shanghai. The study develops a gravity model based on smart card data and analyzes the influence of travel time, travel cost, and station characteristics on after-work activity location choices. Smart card data was collected from the Shanghai Metro, including passenger tap-in and tap-out timestamps, station information, and travel times. The data was preprocessed to clean and prepare it for further analysis. This included handling missing values, removing outliers, and correcting inconsistencies. A gravity model was developed to estimate the probability of an individual choosing a specific location for their after-work activity based on travel time, travel cost, and station characteristics. The gravity model was estimated using
preprocessed smart card data, allowing for the quantification of the impact of each factor on location choice. The model's predictive accuracy was evaluated using a holdout sample of the data, demonstrating its effectiveness in replicating actual location choice patterns. The study concluded that: Smart card data can be effectively utilized to model the location choice of after-work activities for metro commuters. Travel time, travel cost, and station characteristics play significant roles in influencing location choices. The findings contribute to a better understanding of commuter behavior and provide valuable insights for urban planning and transportation system optimization.

Ekowicaksono et al., 2016 [11] uses the gravity model to estimate the number of trips between different zones in the city. The research concludes that the gravity model can be used to estimate the O-D matrix with reasonable accuracy, and it can be used to improve the transportation planning and management in the city.

Fang et al., 2019 [12] analyses the distribution of the passengers on the platform according to the boarding passengers' choice. The author develops a model, taking into consideration the origin-destination of the passengers, their waiting time and the station platform layouts where the passengers' boarding and alighting. The author calibrates the model by using the passengers' weight for the London Underground Hammersmith-City (H\&C) line, an airbag-based suspension system uses to obtain an accurate weight of the train, which is called load-weigh to calculate the number of passengers on each car of the train on the H\&C line the load-weigh Divides by the standard average of passengers' weight, which mentions in the Health Survey for England 2015. This study proposes two strategies. The first strategy is called the origin-based choice which demonstrates the behavior of boarding passengers who prefer the minimum platform walking distance where they board at the station, as well as a less congested area to stand. While the second one called the destination-based choice which demonstrates the behavior of alighting passengers who prefer the minimum walking distance of the interchange pathways where they alight, or platform exits at the station. The author recommended designing more than an entrance for the platform to ensure uniformly passenger distribution. The developed model presents good interpretation in predicting the distribution of passengers on the platform. This method estimates the number of passengers by weighing each train car, then dividing it by the average weight of the passenger. It's considered more accurate than the smart card data method for several reasons, including that it gives us the number of passengers in each car, thus we can determine where passengers are crowded on the platform and in any car accurately. While the smart card data method estimates the number of passengers in all the train cars, which is assumed to be a similar distribution of passengers on the platform and in each train car, which is difficult to achieve in reality because we cannot control passengers' behavior and choices.

Lam et al., 1999 [13] divided the platform into six blocks, and noticed that the most congested block was the second-closest one to the entrance. studied the stopping time,
considering it a pivotal parameter for evaluating system performance, service reliability, and quality. The research attributed the main reason for the variations in dwell time to the boarding and alighting passengers.
Puong 2000 [14] The data collection process involved measuring stopping time, tracking passenger movements through entrances and exits, and assessing congestion levels from the platform, particularly focusing on the most crowded train cars. To gather the required data, four individuals were enlisted, each responsible for specific tasks, such as counting passenger movements through turnstiles. Notably, to enhance accuracy, it's advisable to conduct passenger counts at a car level rather than at the entrance/exit level, whenever sufficient labor resources are available. A mathematical model had been developed. It also highlights the influence of on-board congestion on boarding times for the non-Park Street Stations of the MBTA Red Line. The study's findings emphasize the consequential impact of dwell time's sensitivity to ridership variations, signifying the potential for inconsistent headways and running times, which could compromise service quality and capacity. The model introduced in this study establishes a fundamental framework for identifying critical stations necessary for supporting high-frequency service during peak hours.

Seriani et al., 2016 [15] This study introduces a groundbreaking framework for evaluating passenger interactions at platform-train interfaces (PTIs), with the primary objective of understanding and quantifying the influence of various factors on passenger flow, safety, and comfort. The author employes a multifaceted approach to gather data on passenger movement patterns, interactions, and behavior. This includes video surveillance, passenger surveys, and sensor data. Mathematical models are then developed to represent passenger flow, safety hazards, and comfort indicators. The data collection and mathematical modeling components are seamlessly integrated into a comprehensive framework for evaluating PTI performance. Scenario analysis is conducted to systematically assess the impact of different factors, such as train scheduling, platform layout, and passenger demand, on PTI performance. The study Concluded that: The proposed framework presents a holistic approach to evaluating passenger interactions at PTIs. Its application holds immense potential for optimizing station designs, improving train scheduling, and enhancing passenger experience across various rail systems.

Luangboriboon et al., 2021 [16] This research undertakes an examination of how the density inside a train carriage influences the passenger boarding rate, offering valuable insights for optimizing boarding strategies and minimizing congestion. The research effectively illustrates a non-linear relationship between density and boarding rate, pinpointing an optimal density range for maximizing boarding efficiency. These findings offer valuable insights for refining boarding strategies, managing passenger flow effectively, and mitigating congestion in metro systems. This research contributes to the enhancement of metro system operations, fostering a more efficient and seamless travel experience for passengers.

Methodology \& case study:

a- Data collections:

Table (1) Total Passenger Fluctuations during a week (From 1/3/2021 to 7/3/2021)

	line 1			line 2			line 3		
	Station	Entry	Exil	Station	Entry	Exi	Station	Entry	Exi
	Helwan	306480	30017	Shubra El-Kheima	346611	3164	Adly Mansour	33827	3861
	Ain Helwan	54289	6308	Kolleyyet El-Zeraa	266201	2492	El Haykestep	47342	1638
	Helwan University	177442	17088	Mezallat	71905	7185	Omar Ibn El-Khattab	20293	1786
	Wadi Hof	37396	2948	Khalafawy	76131	7390	Qobaa	16104	1401
	Hadayek Helwan	122102	11075	St. Teresa	67844	6299	Hesham Barakat	27374	2532
	El-Maasara	100118	9107	Road El-Farag	121301	12214	El-Nozha	36633	3361
	Tora El-Asmant	9070	3954	Masarra	107925	1090:	Nadi El-Shams	37345	3410
	Kozzika	75647	6870	Al-Shohadaa	247688	2375:	Alf Maskan	50782	5574
	Tora El-Balad	54230	4903	Attaba	358353	4025	Heliopolis Square	27709	2707
	Sakanat El-Maadi	60187	5843	Mohamed Naguib	171819	1756	Haroun	22699	2084
			5843	Sadat	77307	6238	Al-Ahram	49448	5104
	Maadı	271447	27975	Opera	49941	3886	Koleyet El-Banat	91160	9066
	Hadayek El-Maadi	225500	22207	Dokki	194932	2005:	Stadium	33200	3115
	Dar El-Salam	256332	26485	El Bohoth	250543	2686	Fair Zone	39541	3398
	El-Zahraa	192360	17515	Cairo University	242423	2415 :	Abbassia	90611	9421
	Mar Girgis	43172	3681	Faisal	152438	1439	Abdou Pasha	45165	4203
	El-Malek El-Saleh	115590	11507	El Giza	143752	1492:	El Geish	29487	2330
	Al-Sayeda Zeinab	195324	2032 C	Omm El-Mastyeen	77718	7140	Bab El Shaaria	55875	5835
a)	Saad Zaghloul	151570	14972 \mathbf{b})	Sakiat Mekky	80796	${ }^{7521} \mathbf{c}$)	Attaba	27484	4648

Source: Greater Cairo Underground Metro Authorities.
d) Table (2) The five official schedule operating times for the 3 lines.

			Off Pea	Orning			Off Peak	Evening	Total trips / direction
$\begin{aligned} & \infty \\ & \underset{\sigma}{\theta} \\ & \underset{\sigma}{2} \end{aligned}$	$\stackrel{+}{+}$	Departure time	5.15	5.35	5.40	18.55	19.00	24.00	240
	-	Trips / Direction	3		194		43		
	\sim	Departure time	5.15	6.00	6.05	23.45	23.50	24.30	332
E	-	Trips / Direction	5		321		6		
Z	$$	Departure time	5.15	6.32	6.37	21.28	21.33	24.43	209
		Trips / Direction	8		178		23		

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { r- } \\ & \underset{y}{0} \end{aligned}$	Departure time	5.15	5.45	5.55	24.09	190
		Trips / Direction	3		187		
	\sim	Departure time	5.15	6.00	6.10	24.30	190
	-	Trips / Direction	4		186		
	$\begin{aligned} & \text { n } \\ & 0 \\ & \underline{n} \end{aligned}$	Departure time	5.15	8.27	8.34	24.13	149
		Trips / Direction	21		128		

e)

L

g) Figure (1) the underground metro platform dimension for line 1, and lines 2,3
h) $\quad(\mathrm{L}=200 \mathrm{~m}$ for 1 st line, $\mathrm{L}=180 \mathrm{~m}$ for 2nd and 3rd lines)
i) Source: Greater Cairo Underground Metro Authorities.
j) Table (3) rolling stock characteristics for the three lines.

k)

Source: Youssef M.
1)
m)

Where:
(MC): motor with a driving cabin.
(T): slip carriage (trailer) with longitudinal seats
(M): motor coach without a driving cabin (tapered end).
(N1): An intermediate motor car with one semi-permanent coupler at each end and with third rail collectors.
(N2): Intermediate motor car with a semi - permanent coupler at front end, fully automatic coupler at rear end, and with third rail collectors. The rear end is provided with an auxiliary driving cab.
Each car has 4 doors: two for alighting and two for boarding.

b- Solution model:

- Construction of [O-D] Matrix

Step (1): we converted the weekly passengers' data (P_{w}) Entry \& Exit table (1) into passengers per trip $\left(P_{t i} \& P_{t j}\right)$ during a specific period. This was achieved by establishing a relationship with the official timetable shown in table (2), which divides normal days into three periods (off-peak morning, peak, and off-peak evening), and weekends into two periods (peak and off-peak). The total number of passengers during the week is calculated as follows: $\quad P_{w}=N_{d} * P_{n d}+P_{w e} \ldots$ (1), Where:
$P_{w}=$ Total passengers during the week.
$N_{d}=$ The total number of normal days of the week.
$P_{n d}=$ Passengers on normal days during off peak morning, peak, and off-peak evening.
$P_{w e}=$ Passengers on weekends during peak and off-peak.
As the headway must be inversely proportional to the passengers' traffic, so it is easy to calculate the average corresponding headway for the five official schedules, $i=(1,2,3,4,5)$,Where: $\{(i=1)$ is for (off-peak morning), $(i=2)$ is for (peak) ($i=3$) is for off-peak evening\} for normal days $\&\{(i=4)$ is for (peak), $(i=5)$ is for (off-peak) $\}$ for weekend day.

$$
H_{i}=\frac{D i}{N_{t i}}(\text { min. } / \text { trip }) \ldots \text { (2), }
$$

Where:
$H_{i}=$ Headway for $i=(1,2,3,4,5)$
$D i=$ Duration for $i=(1,2,3,4,5)$
$N_{t i}=$ Number of trips per direction $i=(1,2,3,4,5)$
For line 1:
$H_{1}=\frac{D_{1}}{N_{t 1}}=\frac{5: 35-5: 15}{3}=6.667_{\text {min. } / \text { trip }} \quad H_{2}=\frac{D_{2}}{N_{t 2}}=\frac{(18: 55)-(5: 40)}{194}=4.098_{\text {min. } / \mathrm{trip}}$
$H_{3}=\frac{D_{3}}{N_{t 3}}=\frac{(24: 0)-(19: 0)}{43}=6.977_{\text {min. } / \text { rip }} H_{4}=\frac{D_{4}}{N_{t 4}}=\frac{(5: 15)-(5: 45)}{3}=5.850 \mathrm{~min} . /$ rtip
$H_{5}=\frac{D_{5}}{N_{t 5}}=\frac{(24: 09)-(5: 55)}{187}=10 \mathrm{~min} . /$ trip
According to the official timetable, we have five periods, resulting in five values for headway: (off peak morning, peak, and off-peak evening) for normal days and (peak \& off peak) for weekends. To reduce the number of unknowns, we created the ratio between the peak headway and the headway for the remaining periods. This ratio is equal to one for the peak hour and less than one for the other periods.

$$
R_{i}=\frac{H_{2}}{H_{i}} \text { where } i=(1,2,3,4,5) \ldots \text { (3), }
$$

Where:
$\left(R_{i}\right)$ is the ratio between the headway at peak hour $\left(D_{2}\right)$ to any headway $\left(H_{i}\right)$.
$R_{1}=\frac{H_{2}}{H_{1}}=0.615, R_{2}=\frac{H_{2}}{H_{2}}=1, R_{3}=\frac{H_{2}}{H_{3}}=0.587, R_{4}=\frac{H_{2}}{H_{4}}=0.701, R_{5}=\frac{H_{2}}{H_{5}}=0.41$
Then:

$$
\begin{equation*}
P_{t(i, j)} *\left\{N_{d} * \sum\left(R_{1} * N_{t 1}+R_{2} * N_{t 2}+R_{3} * N_{t 3}\right)+\left(R_{4} * N_{t 4}+R_{5} * N_{t 5}\right)\right\}=P_{w(i, j) \ldots} \tag{4}
\end{equation*}
$$

Where:
$P_{t(i)}=$ entry for passengers per trip at peak hour.
$P_{t(j)}=$ exit for passengers per trip at peak hour.
$P_{w(i)}=$ entry for passengers per week.
$P_{w(j)}=$ exit for passengers per week.
$N_{d}=$ The total number of normal days of the week.
$N_{t(i)}=$ Number of trips per direction for the five official schedules.... $i=(1,2,3,4,5)$

$$
\begin{gathered}
P_{t(i, j)}=\frac{P_{w(i, j)}}{6 * \Sigma\left(R_{1} * N_{t 1}+R_{2} * N_{t 2}+R_{3} * N_{t 3}\right)+\left(R_{4} * N_{t 4}+R_{5} * N_{t 5}\right)} \\
P_{t(i, j)}=\frac{P_{w(i, j)}}{1405.289}
\end{gathered}
$$

Applying the same way for the second and third lines.
n)
p) $\quad P_{t(i, j)}=\frac{P_{w(i, j)}}{2059.794}$
o) For
s) $\quad P_{t(i, j)}=\frac{P_{w(i, j)}}{1275.392}$
q)
r) For
line 3 :

In this research, we chose the peak hour as the case study.

Table (4) Passengers per train per direction at peak hour for line $1,2 \& 3$.

		ine 1		
	Station	Pwi	Pti	Pw
	Helwan	306480	218	3001
	Ain Helwan	54289	39	6308
	Helwan University	17742	126	1708
	Wadi Hof	37396	27	2948
	Hadayek Helwan	122102	87	1107
	El-Maasara	100118	71	910
	Tora El-Asmant	907	6	395
	Kozzika	75647	54	687
	Tora El-Balad	54230	39	490
	Sakanat El-Maadi	60187	43	584:
	Madi	27147	193	2797
	Hadayek El-Maadi	225500	160	2220
	Dar El-Salam	256332	182	2648
	El-Zahraa	192360	137	1751
	Mar Girgis	43172	31	3681
	El-Malek El-Saleh	115590	82	1150
	Al-Sayeda Zeinab	195324	139	2032
	Saad Zaghloul	151570	108	1497
t)	Sadat	1114\%	79	$\left.{ }_{109} \mathbf{3} \mathbf{u}\right)$

line 2			
Station	Pwi	Pti	Pw
Stubra El-Kheima	346611	168	3164
Kolleyyet El-Zeraa	266201	129	2492
Mezallat	71905	35	718:
Khalafawy	76131	37	7391
St. Teresa	67844	33	629!
Road El-Farag	121301	59	1221
Masara	107925	52	1090
Al-Shohadaa	247688	120	2375
Attaba	358353	174	4025
Mohamed Naguib	171819	83	1756
Sadat	77307	38	623!
Opera	49941	24	3881
Dokki	194932	95	2005
El Bohoth	250543	122	2686
Cairo University	242423	118	2415
Faisal	152438	74	1439
El Giza	143752	70	1492
Omm El-Mastyeen	77718	38	7141
Sakiat Mekky	80796	39	752
$\mathrm{EL}_{1} \mathrm{Mamm}$	21472 n	in	${ }_{20} \mathrm{C}_{0} \mathrm{~V}$)

line 3		
Station	Pwi	Pti
Adly Mansour	33827	27
El Haykestep	47342	37
Omar Ibn El-Khatab	20293	16
Qobaa	16104	13
Hesham Barakat	27374	21
El-Nozha	36633	29
Nadi El-Shams	37345	29
Alf Maskan	50782	40
Heliopolis Square	27709	22
Haroun	22699	18
Al-Aliram	49448	39
Koleyet El-Banat	91160	71
Stadium	33200	26
Fair Zone	39541	31
Abbassia	90611	71
Abdou Pasha	45165	35
El Geish	29487	23
Bab El Shaaria	55875	44
Attaba	27484	22

Step (2): we employed an inventive method to establish the [OD] matrix for metro stations. Each row in the matrix was meticulously crafted by multiplying the volume of passenger entries at a given station by a calculated percentage, aptly termed the station's importance factor. This percentage, derived from the gravity model, inherently encapsulates the station's pivotal role in attracting a substantial number of passengers.
$P_{r(i)}=\frac{N_{p(i)}}{T_{n}} 100 \% \ldots$ (5), Where:
$P_{r(i)}=$ Percentage of total ridership for a station i
$N_{p(i)}=$ Number of passengers at station i
$T_{n}=$ Total number of passengers for all the metro stations
Then:

$$
P_{t(i j)}=P_{t(i)} * P_{r(i)} \ldots .(6),
$$

Where:
$P_{t(i j)}=$ origin passengers per trip from the station (i) traveling to the station (j) at any case of the above five official scheduled.
This systematic approach was systematically applied to all stations across the three metro lines, totaling 74 stations. The outcome was a comprehensive square matrix [74*74] can be derivative into 9 smaller matrices.

Figure (2) represents a part [35-35] of the whole [O-D] matrix which contains 9 parts of matrices.

Figure (3) "First Line Matrix" a part [35-35] of the whole [O-D] matrix which contains 9 parts of matrices.

In this research, we conducted a study on the initial matrix in the first row from the left, representing passengers on the first line of the Greater Cairo Metro, and we will refer to it as the "First Line Matrix".

To study the First Line Matrix, we created a model using Microsoft Excel, naming it the "Modified Matrix." in this matrix we changed the diagonal to the entry numbers of passengers $\left(P_{t i}\right)$. Then we created a new row in front of each station name, placed below the original row of the matrix .
In this configuration, each station name has two rows associated with it: the upper row, which represents the original matrix and indicates the numbers of passengers alighting in both down and up directions, and the lower row, which contains the numbers of passengers between two consecutive stations who are still inside the train cars in both down and up directions, (it can be obtained by subtracting the entry numbers of passengers from the upper row).
Furthermore, we added a new cell above each element of the top row of the matrix, coloring it orange. This configuration makes the diagonal contains three cells or elements stacked on top of each other.
The middle element, colored gray, represents the total number of passengers entering the station, while the lower element, colored green, signifies the number of passengers boarding in the up direction. The upper element represents the number of passengers boarding in the down direction.

	Down																																		
	Bording	216		$8{ }^{122}$	26	${ }^{83}$	367	｜ 5	${ }^{50}$	${ }^{36}$	${ }^{40} 1$	${ }^{171}{ }^{1}$	［138	152		25	66	108	82	50			55	50	31		36	8	｜ 21			16	23		
	Alighting			5	1	5	5	0	4	3	4	22	22	${ }^{31}$		6	18	33	27	281		17	508	60	39	42	65	13	45	52	76	58	97	16612	
	Between statio	0	214	14248	368	390	90 467	57534	34535	5826	614	632	781	8881	1016	1122	1130	1162		1044	1035	1139	668	661	672	661	621	645	607	57	52	491	411	26716	169
		1		3			5	7	8																		26	27	28	29	30			33	
		1					56	${ }^{7}$	8												20			23	24								32		3435
		$\frac{\stackrel{y}{3}}{\frac{2}{3}}$	$\begin{aligned} & \underline{\underline{T}} \\ & \hline \frac{1}{c} \end{aligned}$		$\begin{array}{r} \text { 훈 } \\ \text { 휼 } \\ 3 \end{array}$							$\frac{\overline{i g}}{2}$								$\frac{\pi}{\circ}$	$\begin{aligned} & \text { 占 } \\ & \hline \end{aligned}$	宕													（1）
1	Helwan	216	${ }^{2} 2$	14210	210	207	205	205	203	202	200	194	188	182	178	17		170		48	7	109	40	${ }_{6} 6$	${ }^{3}$	${ }_{5}^{4}$		1	${ }_{4}^{4}$	4	${ }^{5}$	${ }_{3}^{4}$	${ }^{6}$	10	7 10 10 0
			${ }_{38}^{214}$																																
2	Ain Helwan	1	40	0	0	0	0	0°																											$1{ }^{1} 2$
								37	36	36	36	35	34	33	32	32	31	30	30	19	18	18	13	11	11	10			8	8		6	5	3	2.0
3	wan	4	1	127	0																														
	wan	0	4	5	121	120	20｜118	18118	181171	117	116	112	1091	105	103	102	101	98	96	65	60	59	40	37	35	33	30	29	27	25	22	19	16	10.	610
		1	0	O_{1}	$\begin{array}{\|l\|} \hline 26 \\ 28 \end{array}$	30																	4	1											
	Wadi Hof	$\stackrel{1}{0}$	1	11 1	$\begin{array}{\|c} 28 \\ 2 \\ \hline \end{array}$	$\frac{0}{26}$	$\begin{aligned} & 0 \\ & \hline 6 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 66 \\ & \hline 16 \\ & \hline 10 \end{aligned}$	${ }^{6} \mid{ }_{26}^{0}$	$\left.125\right\|^{2}$	$\|25\|^{2}$	$\|24\|$	$\frac{1}{24}$	123									$\frac{4}{9}$	$\frac{1}{8}$			6		$\frac{6}{6}$						
				12	0	$\begin{array}{\|l\|} \hline 83 \\ \hline 88 \\ \hline \end{array}$	$8{ }^{33}$	1.01															13												
5	Hadayek Helw	$\begin{array}{\|l\|} \hline 3 \\ \hline 0 \end{array}$	1 3	$\begin{array}{\|l} 2 \\ \hline 3 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 5 \end{array}$					${ }_{81}$	80	77	75	73		71	70	68	66	44	41	41	28	25	24		20								
							${ }_{72}^{67}$																												
6	E－Ma	$\frac{2}{0}$	$\stackrel{0}{2}$	${ }^{1} 1$	$\stackrel{0}{4}$	4	$\frac{72}{5}$	${ }^{2} 5$	${ }^{1} 6$	${ }_{66}$	1.	${ }_{6}^{2}$		60			$\frac{1}{57}$		$\frac{1}{54}$	38	$\frac{2}{35}$		${ }^{23}$	$\frac{2}{21}$	$\frac{1}{20}$	$\frac{1}{18}$	17	16		14			$\frac{2}{9}$	$\begin{array}{l\|l} 3 & \\ 5 \end{array}$	2 3 0
7	Tora El－Asmant	$\stackrel{0}{0}$	${ }_{0}^{0}$	0	\bigcirc	\bigcirc	0 0 0	6 1	${ }^{\circ} \mathrm{O}$	${ }_{5}{ }^{\circ}$																									\div
									${ }_{5}^{5}$																										
	zaika	2	0	${ }^{1}$	0	1	$1{ }_{1} 1$	10	55	－	0	2	1	2	1	0	1	1	1	7	2	0	15	1	1	1	1	0							$2{ }^{2}$
	Kozzika	0	2	2	3	3	$3{ }^{2}$	5	5	50	49	48	46	45									17	16	15	14	13	12	12	11	9	8			
9	Tora El－Balad		0	－1	0	\bigcirc	\bigcirc	10	\bigcirc	${ }^{36}$	0																								
	Tora El－	0	1	12	2	2	${ }^{3}$	$3{ }^{3}$	3	4	36	35	34	33				30		25	24		13	11		10		9		8		6			
10				1						0	40																								
10	Sak	$\stackrel{1}{0}$	1	$1{ }^{1}$	3	3	$3{ }^{1}$	3	） 4	4	4	38	37	36	35	35	34	33	33	27	26	25	14	13			10	10							
				$1{ }^{1} 4$								171																							
	Maadi	${ }_{0}$	${ }^{1}$	${ }_{6}{ }^{8}$	11	12	 2 14 1	年 16	16 1	18	19	20											61	56								30			
													${ }^{138}$																						
12	Hadayek E－Maa	${ }_{0}^{5}$	1	1 1	$\stackrel{1}{9}$	10	12	13	13	15	16	${ }^{5}$								102			51												
														${ }_{152}^{133}$																					
13	Dar Et．5al	${ }_{0}^{6}$	$\frac{1}{6}$	1 6	${ }_{11}^{1}$	2 11	（1） $\begin{gathered}2 \\ 1\end{gathered}$	｜l｜l｜	${ }_{5}{ }^{1} 15$	${ }_{17}$	${ }_{18}^{18}$	${ }_{19}{ }^{6}$	24	${ }_{29}^{181}$	148	148	145	141		115	109	108	58	5	50	47	43	42							0
															112																				
	Et－zah	4	1	$1{ }^{1}$	0	2							${ }^{3}$	4	137																				${ }^{4} 6$
			${ }_{4}$	4.5	8	8	${ }^{10}$	11	12	13	13	14	18	22	26	111	109	106	104	87	82	81	44	40	38	36	32	32	29	27	24	21	17	10.	
15	Mar Girgis	1	0	${ }^{1}$	0	0	${ }^{0}$	10	${ }^{\circ}$	${ }^{0}$	${ }^{0}$	${ }_{3}$	1	1	1	32		1																	$1{ }^{1} 1$
			1	1.																															$1{ }^{1}$
16	El－Malek El－	3	1	12	0	1	$1{ }^{1} 1$	10	1	${ }^{\circ}$	1	${ }^{3}$	2	2	2	0	83	2	1	8	${ }^{3}$	1	25	2	1		2	0							
																	17		63	55			27	24	23	22	20	19	18	17		13	11		
17	A．Saye	5			0	2	21	10		1	1	4	3	4	3	1	2	139		18			37												$4{ }^{6}$
		0		${ }^{1} 6$	8	$\stackrel{1}{1}$	10	（12	${ }^{12}$	13	13	14	19	22	26	29	29	31	${ }_{82}^{106}$	88	83	82	45	41	38		33	32			24				
18	dzag	4	1	$1{ }^{1}$	－		$1{ }_{1} 1$	1	1	1	1	3	3	3	2	。	1		108																${ }^{5}$
		0	4	$4{ }^{4}$	6	7	${ }^{1}$	${ }^{9}$	${ }^{9}$	10	10	11	14	17	20	22	23	24	26	${ }_{68}^{68}$	65	64	35	32		28	25	25		21	19				
19	sadat							0		0		2								71															
	Saat	0	${ }^{3}$	$3{ }^{3}$	5	5	51	7	7	7	${ }_{8}$	8	11	13	15	16	17	18	19	21	48	47	25	23	22	21	19	18	17	16	14	12	10		
				$1{ }^{4}$	1		2	10	2					6			3		3	27	202	2	54												，
	Nasser	0	7	${ }^{7} 8$	12	13	15	17	${ }_{17}{ }_{17}$	19	20	21	27	32	38	42	43	46	50	54	${ }^{81}$	119	65	60	57	53	48	47	44	40	35	31	25	16	
																						－													
21	Orabi	0	2	2	4	4	1 4 1 4	5	$\stackrel{0}{5}$	6	6	6	${ }_{8}$	$\begin{array}{\|l\|} \hline 2 \\ 10 \\ \hline \end{array}$	11	12	$\begin{array}{r} 13 \\ \hline 1 \end{array}$	$\begin{array}{\|} \hline 1 \\ \hline 13 \\ \hline \end{array}$	15	$\begin{array}{\|l\|} \hline 7 \\ \hline 16 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 22 \\ & \hline \end{aligned}$	$\begin{array}{\|} \hline 62 \\ \hline 24 \\ \hline 29 \end{array}$	19		17	11		14							
																							${ }^{55}$												
	Al－Shohadaa	${ }_{6}$	$\frac{1}{6}$	$1{ }^{1}$	1	11	$\frac{2}{13}$	d	${ }^{1} 1$	16	$\frac{1}{17}$	5	家	5	${ }^{3}$	1	2	4	3	15	6	1	${ }^{127}$								4	3		8	8
																			42	45		70	71	51 50											
23	Ghamra	$\begin{aligned} & 6 \\ & 0 \\ & \hline \end{aligned}$	${ }^{1}$	1 3 6	10	$\begin{array}{\|c\|} 2 \\ 10 \\ \hline \end{array}$	$\begin{array}{r\|c\|} \hline & 2 \\ \hline 0 & 13 \\ \hline \end{array}$	14		$\|$16 16	16	$\begin{aligned} & 5 \\ & \hline 18 \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ 23 \\ \hline \end{gathered}$	27	32	$\frac{1}{35}$	36	$\frac{4}{38}$	4	$\begin{array}{\|l\|} \hline 18 \\ \hline 44 \\ \hline \end{array}$	${ }^{6}$	$\frac{1}{68}$	49	109 119	47	$\frac{34}{44}$		39			$\frac{4}{29}$				5 8 8 0
																									${ }_{31}^{47}$										
24	Dem	$\stackrel{4}{0}$	1	1 4 4	$\stackrel{0}{7}$	${ }_{7}^{1}$	1	$\stackrel{0}{10}$	$\frac{1}{10}$	1	11	${ }_{1}^{4}$	${ }_{1}^{3}$	$\begin{gathered} 3 \\ 18 \\ \hline \end{gathered}$	${ }_{22}^{2}$	${ }^{0}$	${ }_{24}^{1}$	${ }^{36}$	${ }_{28}^{2}$	${ }_{30}^{12}$	${ }_{42}^{4}$	${ }_{46}^{1}$	${ }^{34} 4$	${ }_{81}^{3}$	1115	${ }_{2}^{29}$	27								
																										${ }^{25}$									
25	Manshiet	${ }^{3}$	${ }_{3}^{1}$	1 2 3 4 3	\bigcirc	$\frac{1}{6}$	${ }^{1} 51$	${ }_{8}^{\circ}$		1	${ }_{9}$			$\frac{3}{15}$	${ }^{18}$	$\stackrel{0}{0}$	20	$\frac{21}{21}$	${ }_{2}^{23}$	${ }^{10}$	${ }^{35}$	$\frac{1}{38}$	${ }_{39}^{28}$	${ }_{67}$	${ }_{69}$	${ }_{71} 95$	22	22				14	${ }^{3}$		
																											${ }_{36}^{22}$								
26	Kobri El－Qobba	5	$\frac{1}{5}$	1 3 5 6	$\stackrel{\circ}{9}$	$\stackrel{2}{9}$	2 11 11	2 ${ }_{1}$		14	15	${ }_{16}^{5}$	$\left\lvert\, \begin{gathered}4 \\ 21\end{gathered}\right.$	${ }_{24}^{4}$	${ }^{3}$	${ }_{32}$	32	${ }^{34}$	${ }^{38}$	${ }_{40}^{17}$	${ }_{5}^{5}$	62	${ }_{63}^{45}$	${ }_{108}^{108}$	$\begin{array}{\|c\|} \hline 12 \\ 112 \end{array}$	$\begin{gathered} 3 \\ 114 \\ \hline 12 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 153 \\ & \hline \end{aligned}$	36			27	$\frac{3}{24}$	$\frac{4}{19}$	$\frac{7}{12}$	5 7 7 0
27）	Hammamat El－Qobb	$\stackrel{1}{0}$	1	1 1 1 1	$\stackrel{0}{2}$	$\stackrel{0}{2}$	${ }_{3}{ }^{0}$	${ }_{3}$	${ }^{3}$	3	${ }_{3}$	${ }_{4}$	5	$\frac{1}{6}$	7	7	${ }_{7}$		9	${ }^{3}$	13	${ }_{14}$	${ }_{14}^{10}$	24	25	26	26	${ }_{25}^{37}$	8						0
		0		1			${ }^{1} 1$	${ }^{3}$	${ }^{3}$	${ }^{1}$	${ }^{1}$	4	5	6	7		7		9	9	13	14	14	24				27							
28	Saray	3	1	12	\bigcirc	1	1	1	${ }^{1}$	1	1	3	2	${ }^{3}$	2	0	1	2	2	11	${ }^{3}$	1	29	${ }^{3}$	2	2	2	。	100	2	2	2	3		－
		0	${ }^{3}$	${ }^{1} 4$	6	6	${ }^{1} 7$	｜ 8	${ }^{1} 8$	9	10	10	13	16	19	20	21	22	24	26	37	40	41	70	73	74	76	79	79	20		15	13		
29				12	0														2			1	32	${ }^{3}$	2	2	${ }^{3}$	1		113					
	Hadaye	0	${ }_{4}$	$4{ }^{4}$	7	7	${ }^{8}$	9	10	10	11	12	15	18	21	23	24	25	${ }^{28}$	30	42	${ }^{46}$	47	79	${ }_{82}$	84	${ }^{86}$	89	89	91	19				
																															27				
30	eye	${ }_{0}$	5	1 5	9	10	12 0 12 1	2 12 1	${ }^{13}$	14	15	16	21	25	${ }_{30}$	${ }_{33}$	${ }_{33}$	${ }_{35}$	39	${ }_{41}$	${ }_{58}$	${ }^{1}$	${ }^{46}$	111	115	${ }_{17} 1$	120	${ }_{124}$	125	127	130	24	20	12	$7{ }^{5}$
																																16			
31	E－Matarewa	${ }_{0}$	${ }_{4}$	${ }_{4}^{1}{ }_{4}^{2}$	${ }_{6}^{\circ}$	${ }_{7}^{1}$	${ }_{7}^{1}{ }_{8}^{1}$	${ }^{2}$	9	10	11	${ }^{3}$	${ }_{1}^{3}$	3 17	20	23	${ }_{23}$	${ }_{2}^{24}$	${ }_{27}$	${ }_{29}^{12}$	${ }_{4}^{4}$	${ }_{4}^{1}$	${ }_{45}^{31}$	${ }_{77}$		$\begin{aligned} & 2 \\ & 81 \\ & \hline \end{aligned}$	$\begin{array}{r} 3 \\ 83 \\ \hline \end{array}$	${ }_{86}$	${ }_{8}^{2}$		$\begin{array}{\|l\|l\|} \hline 3 \\ \hline 90 \end{array}$	109	13	${ }_{8}^{5}$	
																																	${ }^{13}$		
32	Ain Shams	${ }_{0}$	$\frac{1}{6}$	${ }^{3}$	${ }_{11}^{11}$	${ }_{11}^{2}$	${ }_{1}^{2}$	${ }^{0}$	1	1	$1{ }_{1}^{17}$	${ }^{6}$	${ }_{24}^{4}$	${ }^{5}$	$\begin{aligned} & 3 \\ & 34 \\ & \hline \end{aligned}$	${ }_{37}^{1}$	${ }_{38}^{2}$	${ }_{40}^{4}$	${ }_{44}^{3}$	${ }_{47}^{19}$	${ }_{6}^{6}$	$\frac{1}{72}$	${ }_{74}^{53}$	$\stackrel{5}{126}$	${ }_{1}{ }_{31}$	38 184	$\begin{array}{\|c\|} \hline 137 \\ 137 \end{array}$	${ }_{1}^{141}$	${ }_{142}^{3}$	${ }_{145}^{3}$	$\stackrel{5}{198}$	$\stackrel{3}{153}$	179	${ }_{14}{ }^{14}$	8
	Ezbet El－Naknı	${ }_{0}^{10}$	${ }_{10}$	${ }^{2} 1{ }^{6}$	$\frac{1}{18}$	${ }_{18}^{4}$	${ }_{8}{ }^{3}$ 22	 3 0 25	${ }^{2} 2$	${ }_{2}^{28}$	2			$\stackrel{9}{48}$	${ }_{56}^{6}$	$\frac{1}{62}$	${ }_{6}^{4}$	$\frac{7}{67}$	${ }_{74}^{5}$	${ }_{79}{ }^{33}$	10	$\stackrel{2}{121}$	${ }_{18}^{87}$	$\stackrel{8}{211}$	$\stackrel{5}{5}$	${ }_{2}{ }^{23}$	${ }_{2}^{7}$	${ }_{2}^{136}$	$\frac{5}{237}$	242	$\stackrel{8}{247}$	5	92	292	${ }^{10}{ }^{13}$
																							123		219		228								
${ }^{34}$	arg	${ }_{0}^{6}$	$\frac{1}{6}$	1 4 5	1	${ }_{12}^{2}$	2 2 12 14	2 14 0 16	1 16 16	18	19	${ }_{20}$	${ }_{2}^{5}$	${ }^{6}$	${ }^{47}$	${ }_{40}^{1}$	${ }_{41}^{2}$	4	${ }_{48}^{3}$	${ }_{51}^{21}$	${ }_{73}$	${ }_{79}$	$\begin{array}{\|l\|} \hline 57 \\ \hline 81 \end{array}$	$\stackrel{5}{138}$	$\begin{gathered} 3 \\ 143 \end{gathered}$	$\begin{gathered} 3 \\ 196 \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 5 \\ 149 \end{array} \right\rvert\,$	1	$\begin{aligned} & 3 \\ & \hline 155 \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \hline 158 \end{aligned}$	162	$\begin{array}{\|l\|} \hline 167 \\ \hline \end{array}$	$\stackrel{6}{170}$	${ }^{9} 176$	194
35	New El－Marg	$\stackrel{9}{0}$	$\stackrel{2}{9}$	11	16	17	21	24	24	26	${ }_{27}^{27}$	$\stackrel{9}{9}$	${ }_{38}$	45	5	${ }_{58}$	$\stackrel{4}{59}$	${ }_{63}^{6}$	${ }_{6}{ }^{5}$	${ }^{30}$	104	${ }_{11}$	${ }_{1}^{82}$	198	205	209	214	221		227	232		24	25	
	Bording	0	${ }^{18}$	5	2				5	4					26	6	17	31	26	21	81	24	71	119	${ }^{84}$	71	117	${ }^{27}$	79	91	130	93	156		
		$\stackrel{133}{0}$	${ }_{132}^{28}$	${ }^{28} 73$	${ }_{4} 225$	${ }^{46} 23$	${ }^{6}{ }^{6} 273$	${ }^{2}{ }^{2} 8$	${ }^{27} 206$	${ }_{330}^{19}$	${ }_{345}^{23}$	${ }_{348}^{103}$	${ }_{48}^{78}$		${ }_{5}^{55}$	${ }_{589}^{11}$	${ }_{583}$	${ }_{58}^{58}$	${ }_{61}^{41}$	${ }_{\text {cki }}^{318}$	${ }_{84}^{74}$	${ }_{\text {¢ }}^{18}$	${ }^{583}$	${ }_{1289}^{489}$	${ }_{1273}^{27}$	${ }_{1210}^{27}$	${ }_{126}^{36}$	$\stackrel{7}{7}$	${ }_{1057}^{22}$	${ }^{22}$	${ }^{27} 8$	${ }_{813} 17$	23	${ }_{428}^{23}$	${ }_{266}{ }^{\circ} \mathrm{O}$
	Up																																		

Figure（4）shows the proposed modified matrix．

C - Analysis \& results:

By analyzing the elements of the modified matrix model, we can determine the numbers of passengers in both up and down directions. We represented the passengers in the down direction with orange and those in the up direction with green. Similarly, we represented the alighting passengers in both down and up directions with dark blue, and boarding passengers with light blue. Passengers who still inside the train car between two consecutive stations represented with yellow for the down direction and red for the up direction. To calculate these numbers for each station, we performed the following steps:

1. From the diagonal of the matrix, we can determine the direction of passengers in the metro. If the upper triangle represents the down direction (Helwan - Marg), and the lower triangle represents the up direction (Marg - Helwan).
2. We conducted vertical summation for each station to reach the diagonal in both directions. This was done to obtain the total count for passengers, alighting passengers, and passengers who are still inside the train car between two consecutive stations.
Through the results obtained from the vertical aggregation, we can determine the passenger density in the following scenarios: on the platform, at the doors, and inside the metro train cars. Consequently, we can ensure the fulfillment of the following conditions:
-Interaction between Passenger and Platform: Passenger density on the platform ≤ 2 passenger/m2.

$$
\begin{equation*}
\text { Platform density }=\frac{\text { Number of passengers boarding }}{(L * 2.5)}(p / m 2) \ldots \tag{7}
\end{equation*}
$$

-Interaction between passenger and metro doors, stopping time and train frequency (Headway): the Stopping time(t) ≤ 30 (sec.).

$$
(t)=\frac{\left(P_{t j}+P_{t i}\right) * 0.5}{4 \text { doors per car*(n)}}+3(\text { opening\&closing door })(\mathrm{sec} .) \ldots
$$

Where: $\mathrm{n}=9$ cars for 1 st line, and 8 for 2 nd and 3 rd lines.
-Interaction between Passenger and Train: Passenger density inside metro train cars <7 passenger $/ m 2$ and ≤ 3 passenger $/ m 2$.

$$
\begin{equation*}
P_{\text {in }}=\frac{(1+\text { optimum peak hour factor }) \text { Ptb }-(48 * 9)}{(6 * 33.93+3 * 34.7)}(p / m 2) . . \tag{9}
\end{equation*}
$$

When compensating in equations (7,8 , and 9), we multiplied by a correction factor of (3.5). This is because the data obtained from the Metro Authority represents only passengers using smart cards, which account for approximately one million passengers out of a total of 3.5 million passengers served daily through the Greater Cairo Metro network. The reason for this difference is attributed to the use of subscription cards, as mentioned in the official article [17] and also in the Cairo Metro website [18]. Additionally, when calculating passenger density on the platform, we multiplied by a safety factor of 2.5 , and
for stopping time, we multiplied by a safety factor of 2, due to the irregular distribution of passengers observed through field monitoring of metro stations, and it also raised in the previous researches mentioned in the literature review.

After obtaining the results from the previous equations, we were able to calculate the headway time by assuming that the headway time is inversely proportional to passenger density, which is logical because as the number of passengers increases, more trains are needed, thus reducing the required headway time:

1. In the case of passenger density on the platform ≤ 2 passenger $/ m 2$. During the peak hours, we can use the following relationship to obtain the headway time:

$$
\begin{equation*}
\text { Required Headway }=H i * \frac{\text { Standard Rate of Platform Passenger Density }}{\text { Actual Platform Passenger Density }} . . \tag{10}
\end{equation*}
$$

Where: $H i=$ Actual Headway Time (according to the official schedule).
2. In the case of passenger density at the doors, where the standard rate of the stopping time(t) ≤ 30 (sec.), we can use the following relationship to obtain the headway time:

$$
\begin{equation*}
\text { Required Headway }=H i * \frac{\text { Standard Rate of Stopping Time }}{\text { Actual Stopping Time }} \tag{11}
\end{equation*}
$$

3. In the case of passenger density inside metro train cars <7 passenger $/ m 2$ during the peak hours, we can use the following relationship to obtain the headway time:

$$
\begin{equation*}
\text { Required Headway }=H i * \frac{\text { Standard Rate of Passenger Density inside Metro Cars }}{\text { Actual Passenger Density inside Metro Cars }} \ldots \tag{12}
\end{equation*}
$$

Thus, we obtained three values for the headway time, and we took the minimum value since we are working under peak conditions.

Table (7) shows the results \& conclusions.

		Up					Down				
	station	a	b	c	h	Recommendation	a	b	b	h	Recommendation
1	Helwan	-	7	-	7/2=3.5	stopping a train of two ones	4	5	5	4	The irregularity factor of passenger density is taken 1.5 instead of 2.5
2	Ain Helwan	366	21	309	21/5=4	stopping a train of five ones	12	17	728	12/3=4	stopping a train of three ones
3	Helwan University	94	11	82	11/2=5.5	stopping a train of two ones	4	8	820	4	Basic assumptions
4	Wadi Hof	297	28	25	25/5=5	stopping a train of five ones	18	21	110	10/2=5	stopping a train of two ones
5	Hadayek Helwan	87	15	23	15/3=5	stopping a train of three ones	6	10	14	4	The irregularity factor of passenger density is taken 2 instead of 1
6	El-Maasara	89	17	17	17/4=4.25	stopping a train of four ones	7	12	27	7/2=3.5	stopping a train of two ones
7	Tora El-Asmant	932	37	14	14/3=5	stopping a train of three ones	85		34	6/2=3	stopping a train of two ones
8	Kozzika	103	20	14	14/3=5	stopping a train of three ones	9	14	4	6/2=3	stopping a train of two ones
9	Tora El-Balad	131	23	12	12/3=4	stopping a train of three ones	13	18	8	5	Basic assumptions
10	Sakanat El-Maadi	112	21	11	11/2=5.5	stopping a train of two ones	12	17	7	5	Basic assumptions
11	Maadi	23	8	11	11/2=5.5	stopping a train of two ones	3	6	65	3	Basic assumptions
12	Hadayek El-Maadi	22	9	8	8/2=4	stopping a train of two ones	3	6	64	3	Basic assumptions
13	Dar El-Salam	16	8	7	7/2=3.5	stopping a train of two ones	3	6	63	3	Basic assumptions
14	El-Zahraa	18	11	6	6/2=3	stopping a train of two ones		7	73	3	Basic assumptions
15	Mar Girgis	73	25	5	5	Basic assumptions	18	20	2 3	3	Basic assumptions
16	El-Malek El-Saleh	27	15	5	5	Basic assumptions	7	11	13	3	Basic assumptions
17	Al-Sayeda Zeinab	15	10	5	5	Basic assumptions	4	7	7	3	The effect of subscribtion factor is taken 3 instead of 3.5
18	Saad Zaghloul	18	13	5	5	Basic assumptions	6	9	93	3	The effect of subscribtion factor is taken 3 instead of 3.5
19	Sadat	23	4	5	4	Basic assumptions	9	4	43	3	Basic assumptions
20	Nasser	6	7	4	4	Basic assumptions	4	6	63	3	Basic assumptions
21	Orabi	19	17	3	3	Basic assumptions	13	15	53	3	The effect of subscribtion factor is taken 3 instead of 3.5
22	Al-Shohadaa	7	3	4	3	Basic assumptions	8	4	45	4	Basic assumptions
23	Ghamra	4	6	3	3	The effect of subscribtion factor is taken 3 instead of 3.5	9	9	95	5	Basic assumptions
24	El-Demerdash	6	9	3	3	The effect of subscribtion factor is taken 3 instead of 3.5	15	12	25	5	Basic assumptions
25	Manshiet El-Sadr	7	10	3	3	The effect of subscribtion factor is taken 3 instead of 3.5	19	13	35	5	Basic assumptions
26	Kobri El-Qobba	4	7	3	3	Basic assumptions	13	9	95	5	Basic assumptions
27	Hammamat El-Qobba	17	19	3	3	Basic assumptions	60	24	45	5	Basic assumptions
28	Saray El-Qobba	6	9	3	3	Basic assumptions			35	5	Basic assumptions
29	Hadayeq El-Zaitoun	5	9	3	3	Basic assumptions		12	26	6/2=3	stopping a train of two ones
30	Helmeyet El-Zaitoun	4	7	3	3	Basic assumptions	17	9	96	6/2=3	stopping a train of two ones
31	El-Matareyya	5	9	4	4	Basic assumptions	29	12	27	7/2=3.5	stopping a train of two ones
32	Ain Shams	3	6	5	3	Basic assumptions	21	8	89	9/2=4.5	stopping a train of two ones
33	Ezbet El-Nakhl	3	4	8	3	The irregularity factor of passenger density is taken 1.5 instead of 2.5	21	6	618	6/2=3	stopping a train of two ones
34	El-Marg	3	5	6	3	Basic assumptions	55	8	812	8/2=4	stopping a train of two ones
35	New El-Marg	3	4	-	3	The irregularity factor of passenger density is taken 1.5 instead of 2.5	-	6	6	6/2=3	stopping a train of two ones

Note:

Basic assumptions are : The effect of subscription factor $=3.5$, the irregularity factor of passenger density on platform $=2.5$, the irregularity factor of passenger density at doors $=$ 2 , the irregularity factor of passenger density inside metro cars $=1$.

Conclusions:

This research has revealed significant discrepancies between the current Greater Cairo Metro operation and the dynamic needs of its ridership. The official timetable's rigidity fails to adapt to passenger fluctuations, leading to overcrowding and inefficiencies. Uneven passenger distribution across platforms and trains further exacerbates the issue, highlighting the need for improved flow management strategies within stations. Additionally, the lack of dedicated boarding and alighting doors, coupled with illegal passenger behavior, contributes to increased stopping times and operational disruptions. To address these challenges, this research proposes an innovative methodology for optimizing metro operations. By developing dynamic headway models that cater to varying passenger volumes and circumstances, this approach ensures efficient service provision while minimizing passenger wait times. Furthermore, optimizing station design through strategic modifications to the six key components can significantly improve passenger flow and reduce congestion. Additionally, analyzing the impact of potential
ticket price adjustments and new infrastructure on ridership patterns can provide valuable insights for informed decision-making.

By implementing the proposed methodology, the Greater Cairo Metro can achieve optimal operation, characterized by efficient service provision, improved passenger experience, and enhanced safety. This will not only contribute to a more sustainable and efficient transportation system but also foster a positive impact on the city's overall economic and social well-being. The future of the Greater Cairo Metro lies in embracing dynamic solutions that adapt to the ever-evolving needs of its passengers, and this research serves as a crucial step towards achieving that goal.

References:

[1] "Cairo.pdf." Accessed: Dec. 20, 2023. [Online].Available: https://www.ucl.ac.uk/dpuprojects/Global_Report/pdfs/Cairo.pdf
[2] "Egypt: total population by governorate 2022," Statista. Accessed: Dec. 20, 2023. [Online]. Available: https://www.statista.com/statistics/1229759/total-population-of-egypt-by-governorate/
[3] "Internal Migration and Factors in Egypt - Free Essay Example at GrabMyEssay." AccessedDec. 202023 [Online].Available: https://www.grabmyessay.com/samples/internal-migration-and-factors-in-egypt
[4] "Internal migration and education: findings from Egypt - UNESCO Digital Library." Accessed:Dec.20,2023Online].Available: https://unesdoc.unesco.org/ark:/48223/pf0000371512
[5] "Cairo Metro Wikipedia," Wikipedia. Dec. 04, 2023. Accessed: Dec. 20, 2023. [OnlineAvailable:
https://en.wikipedia.org/w/index.php?title=Cairo_Metro\&oldid=1188356536
[6] "Cairo Metro Egypt - Inclusive Infrastructure." Accessed: Dec. 20, 2023. [Online]. Available: https://inclusiveinfra.gihub.org/case-studies/cairo-metro-egypt/
[7] "National Authority for Tunnels." Accessed: Dec. 20, 2023. [Online]. Available: http://www.nat.gov.eg/Location.aspx?id=30
[8] M. M. Eldeeb, A. S. Qotb, H. S. Riad, and A. M. Ashour, "Optimal operation interaction (passenger/train/platform) for Greater Cairo Underground metro (GCUM) 1st and 2nd line," Ain Shams Engineering Journal, vol. 9, no. 4, pp. 3067-3076, Dec. 2018, doi: 10.1016/j.asej.2018.08.003.
[9] Civil Department, Higher Technological Institute 10th of Ramadan city, Egypt (Ph.D. Ain Shams university faculty of engineering) et al., "Proposed Methodology to Investigate the Metro Operation, Socio-Economic Impact, and its Revenue Using Automatic Ticket Machine Outputs," IJITEE, vol. 8, no. 11, pp. 396-402, Sep. 2019, doi: 10.35940/ijitee.K1362.0981119.
[10] Y. Wang, G. H. de A. Correia, E. de Romph, and H. J. P. Timmermans, "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, vol. 63, pp. 40-47, Jul. 2017, doi:
10.1016/j.jtrangeo.2017.06.010.
[11] I. Ekowicaksono, F. Bukhari, and A. Aman, "Estimating Origin-Destination Matrix of Bogor City Using Gravity Model," IOP Conf. Ser.: Earth Environ. Sci., vol. 31, no. 1, p. 012021, Jan. 2016, doi: 10.1088/1755-1315/31/1/012021.
[12] J. Fang, T. Fujiyama, and H. Wong, "Modelling passenger distribution on metro platforms based on passengers' choices for boarding cars," Transportation Planning and Technology, vol. 42, no. 5, pp 442-458, Jul. 2019,doi: 10.1080/03081060.2019.1609218.
[13] W. H. K. Lam, C.-Y. Cheung, and C. F. Lam, "A study of crowding effects at the Hong Kong light rail transit stations," Transportation Research Part A: Policy and Practice, vol. 33, no. 5, pp. 401-415, 1999.
[14] A. Puong, "Dwell Time Model and Analysis for the MBTA Red Line".
[15] S. Seriani, T. Fujiyama, and G. De Ana Rodriguez, "A New Framework to Evaluate Passenger Interactions at Platform Train Interfaces," International Journal of Railway Technology, vol. 5, no. 4, Art. no. 4, Sep. 2016, Accessed: Nov. 21, 2023. [Online]. Available: http://dx.doi.org/10.4203/ijrt.5.4.1
[16] N. Luangboriboon, S. Seriani, and T. Fujiyama, "The influence of the density inside a train carriage on passenger boarding rate," International Journal of Rail Transportation, vol. 9, no. 5, pp. 445-460, Sep. 2021, doi: 10.1080/23248378.2020.1846633.
[17] "Metro: One million passengers take the three lines daily using subscriptions." Accessed: Nov. 20, 2023. [Online]. Available: https://2u.pw/mgtRkcR
[18] "Cairo Metro," Railway Technology. Accessed: Nov. 20, 2023. [Online]. Available: https://www.railway-technology.com/projects/cairo-metro .

