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 ملخص البحث
فى بحث وحجم. مقاومة الكمرات الخرسانة المسلحة للقص والتى تقل بزيادة عمق الكمرات الفعال تسمي بتأثير ال

لمعادلة اوتقييم  المؤثرة فى مقاومة الكمرات الخرسانية فى القص عملي لدراسة هذه العوامل برنامج أجُرِي   سابق

. رسانيةت الخالتى يتم بها حساب مقاومة الكمرات الخرسانية فى القص فى الكود المصري لتصميم وتنفيذ المنشآ

يا بغرض تم عمل نموذج عددي للكمرات التى اختبرت معمل "6.13وفى هذا البحث وباستخدام برنامج "أباكوس 

فى ذلك  لعددىاالتحقق من دقة النموذج العددي فى حساب مقاومة القص للكمرات وحيث ثبتت قدرة وكفاءة النموذج 

مرات للك صىالحمل الأق قيم فقد امتد البحث لعمل دراسة بارامترية باستخدام نفس البرنامج التحليلي لتقدير

 .مق الفعال للكمرات الخرسانيةوالع الخرسانة، ضغط قوة التسليح ، مع تغيير نسبة الخرسانية

ABSTRACT 

The shear strength of reinforced concrete beams, which decreases with increase in 

depth, is prominently described as the size effect. The main objective of this research 

was to investigate to what extent the beam depth, width, longitudinal reinforcement 

ratio and concrete compressive strength, influence the ultimate shear capacity of 

reinforced concrete beams without transverse reinforcement. An experimental program 

was undertaken earlier 1 to study these parameters and to evaluate the current Egyptian 

Code of practice (ECP 203-2017) 2 empirical formula function for calculation shear 

strength of concrete beams.  

The ultimate load was verified analytically using a finite element (FE) program 

“ABAQUS 6.13”, and the results gave a good agreement with the experimental results. 

A parametric study was performed using the same FE program to estimate the ultimate 

load for beams and to compare the results among different variables; longitudinal steel 

ratio, concrete compressive strength, and the effective depth for beams.   

Key Words: ABAQUS, size effect, concrete, shear strength.  

INTRODUCTION 

Shear problems usually vex structural engineers due to the absence of a unified theory 

that can explain different design situations where shear is involved. 

Most of the design codes have adopted empirical methods with several different 

expressions that aim to express shear strength for concrete sections. 

The current and the previous Egyptian Code of practice (ECP 203-2017)2 ,(ECP 203-

2007)3 depends on an empirical formula function only in concrete characteristic 

compressive strength for calculation of concrete shear strength in both normal and wide 

beams and do not even account for some basic and proven factors affecting the shear 

strength capacity of concrete members. Of these factors, the effect of member size and 

the percentage of longitudinal reinforcement on the shear capacity of beam elements. 
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The first aspect is concerned with the observation that under certain circumstances as 

the size of a reinforced concrete member increases the shear strength decreases. This so 

called "size effect" in shear.  

The second aspect is concerned with the amount and distribution of longitudinal 

reinforcement in concrete members. 

OUTLINE OF THE EXPERIMENTAL PROGRAM 

M. Gamil1 carried out an experimental program consists of eighteen beams with 

detailing as shown in Figure (1). Specimens were subjected to a three point bend test 

until failure. Detailed information of the specimens is summarized in Table 1. 

 

 

Table 1: Details of the Specimens 

Group 
Beam 

Type 

Nominal 

 fcu, 

N/mm2 

Specimen 
Dimensions Longitudinal 

reinforcemen

t  

reinforcemen

t ratio, % b, mm t,mm leff,mm 

Group 

(I) 
Wide 

Beams 

25 B1 500 250 1350 7Y16 1.25 

25 B2 700 250 1350 10Y16 1.28 

Group 

(II) 

25 B3 700 150 750 10Y12 1.29 

25 B2 700 250 1350 10Y16 1.28 

25 B4 700 350 1950 14Y16 1.24 

Group 

(III) 

Normal 

Beams 

25 B5 125 250 1350 3Y12 1.21 

25 B6 125 350 1950 2Y18 1.25 

25 B7 125 600 3368 2Y18+2Y16 1.30 

Group 

(IV) 
Wide 

Beams 

25 B8 500 250 1350 8Y12 0.80 

25 B9 700 250 1350 11Y12 0.79 

Group 

(V) 

25 B10 700 150 750 9Y10 0.81 

25 B9 700 250 1350 11Y12 0.79 

25 B11 700 350 1950 9Y16 0.80 

Group 

(VI) 

Normal 

Beams 

25 B12 125 250 1350 3Y10 0.84 

25 B13 125 350 1950 3Y12 0.83 

25 B14 125 600 3368 3Y16 0.84 

Group 

(VII) 

Wide 

Beams 

87.5 B15 700 250 1350 10Y16 1.28 

87.5 B16 700 350 1950 14Y16 1.24 

Normal 

Beams 

87.5 B17 125 250 1350 3Y12 1.21 

87.5 B18 125 600 3368 2Y18+2Y16 1.25 

 

 

 

 



  

151 
 

150 150

L

Longitudinal Reinforcement

Stirrups

b

t

t

L-300

3 R8

--A

A

--

Section (A)

--B

B

--

Section (B)

Stirrups

3 R8

t

One-cell

stirrup
R8

b

Longitudinal Reinforcement

Longitudinal Reinforcement

Longitudinal Reinforcement

Longitudinal Reinforcement

 

Figure 1: Details of specimens  

 

FINITE ELEMENT MODELING 

To study the behaviour of the beams, a numerical model includes the nonlinear 

behaviour of the constitutive materials; reinforcement bars, and concrete, separately was 

generated to investigate the ultimate capacity of the composite beams. 

In order to reduce the computational time, only quarter of the beam was represented in 

the FE model taking into account the symmetry of the beams. The details of the 

reinforced concrete beam modelled in ABAQUS is shown in Figure (2). 

In nonlinear analyses, each loading step is broken into increments so that the nonlinear 

solution path can be followed. ABAQUS/Standard automatically chooses the size of the 

subsequent increments. By the end of each increment, the structure is in (approximate) 

equilibrium. An iteration is an attempt to find an equilibrium solution in an increment. If 
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the model is not in equilibrium at the end of the iteration, ABAQUS/Standard tries 

another iteration. With every iteration the solution that ABAQUS/Standard obtains 

should be closer to equilibrium; however, sometimes the iteration process may diverge, 

subsequent iterations may move away from the equilibrium state. In that case, 

ABAQUS/Standard may terminate the iteration process and attempt to find a solution 

with a smaller increment size. 

 

 

 

Figure 1: Simplified Beam Details used in the FE Model 

 

THE MATERIAL MODELS 

Concrete model 
ABAQUS 6.13 program provides the capability of simulating the damage using either 

of the three crack models for reinforced concrete elements:  

1. Smeared crack concrete model. 

2. Brittle crack concrete model  

3 Concrete damaged plasticity model. 

Out of the three concrete crack models, the concrete damaged plasticity model is 

selected in the present study as this technique has the potential to represent complete 

inelastic behaviour of concrete both in tension and compression including damage 

characteristics, B. L. Wahalathantri et al 4. 

The concrete damaged plasticity model assumes that the two main failure mechanisms 

in concrete are the tensile cracking and the compressive crushing. In this model, the 

uniaxial tensile and compressive behaviour is characterized by damaged plasticity. Both 

of these phenomena are the result of micro-cracking. The evolution of the yield (or 

failure) surface is determined by two hardening variables, 𝜀𝑡̃
𝑝𝑙

 and 𝜀𝑐̃
𝑝𝑙

, where 𝜀𝑡̃
𝑝𝑙

 and 

𝜀𝑐̃
𝑝𝑙

 are the tension and compression equivalent plastic strains, respectively. Each of 

them is linked to degradation mechanisms under tensile or compressive stress 

conditions, as shown in Figure 2). The degradation of the elastic stiffness is 

characterized by two damage variables, 𝑑𝑡 and 𝑑𝑐. 
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a) Tension b) Compression 

Figure 2: Response of Concrete to Uniaxial Loading in A) Tension B) Compression 

(ABAQUS Analysis User’s Manual5) 

Tension stiffening relationship 

A. Hillerborg, et al.6 suggested a linear softening curve for concrete tension behavior, as 

shown in Figure 3(a), and proposed a crack width, 𝑤𝑐 , of 0.01~0.02mm based on 

experiments. The CEB-FIP Model Code7 proposed a bilinear stress-crack opening 

relationship for cracked concrete subjected to tension as given in Equations (1) and (2), 

Figure 3(b).  
 

fct

GF

w

ft

w  = 0.01   0.02 mmc

fct

wc

GF

w

ft

w1

fct

w

ft

 0.15fct

GF

w  = 0.8 G  /fI

f  = 0.3fctI

F ct w  = 3.6 G  /fc F ct

a) Hilleborg model (1976) b) CEB-FIP model (1990)

c) Hilleborg model (1985)

 
a) A. Hillerborg model[6] b) CEB-FIP Model Code[7] 

Figure 3: Concrete Tension Stiffening Models 

𝑓𝑡 =
0.15𝑓𝑐𝑡
𝑤𝑐 − 𝑤1

(𝑤𝑐 − 𝑤)       𝑓𝑜𝑟   0 ≤ 𝑓𝑡 ≤ 0.15𝑓𝑐𝑡   (1) 

𝑓𝑡 = 𝑓𝑐𝑡 (1 − 0.85
𝑤

𝑤1
)        𝑓𝑜𝑟   0.15𝑓𝑐𝑡 ≤ 𝑓𝑡 ≤ 𝑓𝑐𝑡  (2) 

𝑤1 = 2
𝐺𝐹
𝑓𝑐𝑡
− 0.15𝑤𝑐  (3) 

𝑤𝑐 = 𝛼𝐹
𝐺𝐹
𝑓𝑐𝑡

  (4) 

Where 𝑓𝑐𝑡 is the tensile strength of concrete (MPa), 𝑓𝑡 is the tensile stress, 𝑤 is the crack 

opening (mm), 𝑤1 is the crack opening (mm) for 𝑓𝑡 = 0.15𝑓𝑐𝑡, 𝑤𝑐 is the crack opening 

(mm) for 𝑓𝑡 = 0, 𝐺𝐹 is the fracture energy (𝑁𝑚𝑚/𝑚𝑚2), and 𝛼𝐹 is a coefficient which 
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depends on maximum aggregate size, 𝑑𝑚𝑎𝑥 (mm). 𝛼𝐹 = 8, 7, and 5 for 𝑑𝑚𝑎𝑥 (mm) = 8, 

16, and 32 respectively, as proposed by CEB-FIP Model Code6. 

Concrete in tension was modeled as linear elastic brittle material with strain softening. 

Tension stiffening is allowed by modifying the concrete softening behavior. Post-

cracking stress–strain relationship was as suggested by B. Massicotte, A.E. Elwi, J.G. 

MacGregor8. and is shown in Figure (5). This relationship assumed that the strain 

softening after cracking reduces the stress to zero at a total strain of about 16 times the 

strain at first cracking. The curve, suggested by Massicotte7, was softened to permit a 

relatively gradual response behavior and consequently to decrease the convergence 

problems, as shown in Figure (6) as suggested by Said M. Allam9. 

 

 

Figure Error! No text of specified style in document. : Tension softening curve 

suggested by Massicotte et al.8. 

 

 

Figure 6: Modified tension softening curve9 
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Compressive stress-strain relationship 

In this paper, the uniaxial nonlinear stress-strain relationship proposed by L. P. Saenz10, 

was used as a basic stress-strain curve, and linear behavior was assumed up to 𝑓𝑐𝑜 =
0.4𝑓𝑐

′, as propsed in the Eurocode 2 (ENV 1992-1-1:1992)11. Where, 𝑓𝑐
′ is the 

compressive cylinder strength of concrete. 
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Figure 7: Stress-Strain Behavior of Concrete under Uniaxial Compression 

The Poisson’s ratio (𝜐𝑐 = 0.2 is recommended in this study) controls the volume 

changes of concrete for stresses below the crirical stress level, 𝑓𝑐𝑜 (in the elastic region).  

For non-linear analysis, the stress-strain relation for concrete in compression 

recommended by L. P. Saenz10, Figure ), is defined by the following form: 

𝑓𝑐 =
𝐸𝑐𝜀𝑐

1 + (𝑅 + 𝑅𝐸 − 2) (
𝜀𝑐
𝜀𝑜
) − (2𝑅 − 1) (

𝜀𝑐
𝜀𝑜
)
2

+ 𝑅 (
𝜀𝑐
𝜀𝑜
)
3 

 (5) 

Where 𝐸𝑐 is the elastic modulus of concrete which is calculated according to the ACI 

318-14 12 as follows: 

𝐸𝑐 = 4700√𝑓𝑐′  (6) 

And 𝜀𝑜 is calculated according to the following equation propsed by Salem 13: 

𝜀𝑜 = 1.71
𝑓𝑐
′

𝐸𝑐
  (7) 

 

Where 𝐸𝑜 and 𝑅𝐸 are as follows: 

𝐸𝑜 =
𝑓𝑐
′

𝜀𝑜
 (8) 

𝑅𝐸 =
𝐸𝑐
𝐸𝑜

 (9) 

And R was calculated according to the following equation: 

𝑅 =
𝑅𝐸(𝑅𝜎 − 1)

(𝑅𝜀 − 1)2
−
1

𝑅𝜀
 (1) 

Where 𝑅𝜀 = 𝑅𝜎 = 4 as reported by M. M. A. Salem13. 

𝑅 =
4𝑅𝐸 − 3

12
 (2) 
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Steel reinforcing bar model 
The constitutive behaviour of steel is predicted using an elastic perfectly plastic model, 

as described in (ABAQUS 6.13)5. In this approach, the steel behaviour is elastic up to 

the yield stress. At this point, the material yields under constant load, as shown in 

Figure (8). The parameters required by this formulation are the modulus of elasticity (𝐸𝑠 
= 200 GPa), poisson’s ratio (𝜐𝑠 = 0.3), and the yield stress (𝑓𝑠𝑦 = 400 MPa). 

The steel reinforcement was embedded to the concrete assuming that there is a perfect 

bond between the concrete and the steel reinforcement. Figure (9) show modelled beam 

in ABAQUS.  

 

fsy



fs

E  = 200 GPas

s

 

Figure 8: Stress-Strain Relationship for Steel Reinforcement 

  
a) Concrete beam b) Impeded steel 

Figure 9: Beam Model in Abaqus 

NONLINEAR ANALYSIS AND PARAMETRIC STUDY 

NUMERICAL MODEL VERIFICATION 

The developed finite element (FE) model was used to validate the results of the 

experimental data performed by M. Gamil1. The load-deflection curves of the beams 

were first verified to check for the validity of the concrete and steel curves that were 

inserted in the FE model. Also, this verification was performed to check for the ultimate 

capacity that could be estimated using the FE model.  

 

Verification of the load-deflection behavior 
The experimental load-deflection curves of beams are hereby plotted versus the load-

deflection curves estimated using the finite element model, as shown in Figure (10) to 

Figure (16). A comparison between the ultimate loads from numerical model and the 

ultimate loads from tests is shown in Table 2. It was concluded that the finite element 

model gives a reliable load-deflection relationship for the reinforced concrete beams.  
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a) B1 b) B2 

Figure 10 : Experimental Versus Numerical results for the load-deflection of 

specimens in group I. 

  
a) B3 b) B4 

Figure 11 : Experimental Versus Numerical results for the load-deflection of 

specimens in group II. 

  

a) B5 b) B6 

 

c) B7 

Figure 12 : Experimental Versus Numerical results for the load-deflection of 

specimens in group III. 
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a) B8 b) B9 

Figure 13 : Experimental Versus Numerical results for the load-deflection of 

specimens in group IV. 

  
a) B10 b) B11 

Figure 14 : Experimental Versus Numerical results for the load-deflection of 

specimens in group V. 

  
a) B12 b) B13 

 

c) B14 

Figure 15 : Experimental Versus Numerical results for the load-deflection of 

specimens in group VI. 
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a) B15 b) B16 

 
 

a) B17 b) B18 

Figure 16 : Experimental Versus Numerical results for the load-deflection of 

specimens in group VII. 

Table 2: Numerical vs. Experimental shear capacity    

Group Specimen 
Ptest, 

KN 

PNum, 

KN 

Difference= (Num-test)/ test 

(%) 

Group 

(I) 

B1 264.6 256.9 -2.910 

B2 369.4 387.4 4.873 

Group 

(II) 

B3 236.3 238.6 0.973 

B2 369.4 387.4 4.873 

B4 420.2 422.4 0.524 

Group 

(III) 

B5 59.4 58.1 -2.189 

B6 76.4 73.5 -3.796 

B7 119.1 118.8 -0.252 

Group 

(IV) 

B8 218.4 224.2 2.656 

B9 289.6 315.3 8.874 

Group 

(V) 

B10 210.1 230.4 9.662 

B9 289.6 315.3 8.874 

B11 368.3 360.1 -2.226 

Group 

(VI) 

B12 57.4 61.7 7.491 

B13 62.2 63.4 1.929 

B14 93.4 104.0 11.349 

Group 

(VII) 

B15 486.1 483.7 -0.494 

B16 569.4 565.2 -0.738 

B17 85.9 85.2 -0.815 

B18 146.1 151.6 3.765 
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PARAMETRIC STUDY  
The calibrated finite element model discussed above was used to predict the ultimate 

load of different beams. The parametric study in this paper was performed on the two 

grades of concrete, which were used in the experimental study; 25 MPa and 87.5 MPa. 

Table 3 shows specimen details of parametric study. The normalized shear stress for the 

specimens in parametric study is shown in Table 3. 

 

Table 2: Details of Specimens in Parametric Study  

Group Specimen 
Dimensions, mm  

Longitudinal 

reinforcement 

reinforcement 

ratio, %  

fcu   

(N/mm2) 
b t leff 

G1 

B19 500 900 5250 7Y32 1.28 25 

B20 500 1250 7350 7Y37 1.23 25 

B21 500 1500 8850 7Y41 1.25 25 

B22 500 1750 10350 7Y44 1.23 25 

B23 500 2000 11850 7Y47 1.23 25 

B24 500 2250 13350 7Y50 1.23 25 

B25 500 2500 14850 7Y52 1.20 25 

B26 500 2750 16350 7Y55 1.22 25 

B27 500 3000 17850 7Y58 1.24 25 

G2 

B28 500 900 5250 7Y25 0.78 25 

B29 500 1250 7350 7Y30 0.81 25 

B30 500 1500 8850 7Y33 0.81 25 

B31 500 1750 10350 7Y36 0.82 25 

B32 500 2000 11850 7Y38 0.80 25 

B33 500 2250 13350 7Y40 0.79 25 

B34 500 2500 14850 7Y43 0.82 25 

B35 500 2750 16350 7Y45 0.82 25 

B36 500 3000 17850 7Y47 0.81 25 

G3 

B37 500 900 5250 7Y32 1.28 87.5 

B38 500 1250 7350 7Y37 1.23 87.5 

B39 500 1500 8850 7Y41 1.25 87.5 

B40 500 1750 10350 7Y44 1.23 87.5 

B41 500 2000 11850 7Y47 1.23 87.5 

B42 500 2250 13350 7Y50 1.23 87.5 

B43 500 2500 14850 7Y52 1.20 87.5 

B44 500 2750 16350 7Y55 1.22 87.5 

B45 500 3000 17850 7Y58 1.24 87.5 

G4 

B46 500 900 5250 7Y25 0.78 87.5 

B47 500 1250 7350 7Y30 0.81 87.5 

B48 500 1500 8850 7Y33 0.81 87.5 

B49 500 1750 10350 7Y36 0.82 87.5 

B50 500 2000 11850 7Y38 0.80 87.5 

B51 500 2250 13350 7Y40 0.79 87.5 

B52 500 2500 14850 7Y43 0.82 87.5 

B53 500 2750 16350 7Y45 0.82 87.5 

B54 500 3000 17850 7Y47 0.81 87.5 
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Table 3: Normalized Shear Strength for specimens in parametric study  

Group Specimen 
Pnum, 

KN 

Qnum, 

KN 

fcu, 

N/mm2 

qnum, 

N/mm2 

qnum /(fcu)0.5 

(N)1/2/mm 

G1 

B19 650.83 325.42 25 0.744 0.149 

B20 740.64 370.32 25 0.605 0.121 

B21 813.13 406.57 25 0.551 0.110 

B22 882.06 441.03 25 0.511 0.102 

B23 970.71 485.36 25 0.492 0.098 

B24 1067.20 533.62 25 0.480 0.096 

B25 1159.60 579.80 25 0.469 0.094 

B26 1252.50 626.25 25 0.460 0.092 

B27 1342.70 671.33 25 0.451 0.090 

G2 

B28 568.26 284.13 25 0.649 0.130 

B29 627.56 313.78 25 0.512 0.102 

B30 685.13 342.56 25 0.464 0.093 

B31 740.93 370.47 25 0.430 0.086 

B32 813.24 406.62 25 0.412 0.082 

B33 890.78 445.39 25 0.400 0.080 

B34 973.01 486.50 25 0.393 0.079 

B35 1038.60 519.28 25 0.381 0.076 

B36 1119.50 559.73 25 0.376 0.075 

G3 

B37 845.46 422.73 87.5 0.966 0.103 

B38 954.77 477.39 87.5 0.779 0.083 

B39 1052.05 526.03 87.5 0.713 0.076 

B40 1143.10 571.55 87.5 0.663 0.071 

B41 1234.16 617.08 87.5 0.625 0.067 

B42 1328.00 664.00 87.5 0.597 0.064 

B43 1434.79 717.39 87.5 0.580 0.062 

B44 1551.31 775.66 87.5 0.569 0.061 

B45 1651.18 825.59 87.5 0.555 0.059 

G4 

B46 648.52 324.26 87.5 0.741 0.079 

B47 722.48 361.24 87.5 0.590 0.063 

B48 811.57 405.78 87.5 0.550 0.059 

B49 899.92 449.96 87.5 0.522 0.056 

B50 980.43 490.21 87.5 0.496 0.053 

B51 1064.40 532.20 87.5 0.478 0.051 

B52 1142.46 571.23 87.5 0.462 0.049 

B53 1224.33 612.17 87.5 0.449 0.048 

B54 1316.70 658.35 87.5 0.443 0.047 

 

The numerical results of the parametric study specimens showed that as the beam depth 

increase the shear strength of the beam decrease. Figure (17) to Figure (20) shows the 

normalized shear strength for numerical model and the normalized codes predicting 

shear strength versus depth/width in-groups G1, G2, G3, and G4. 
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Figure 17: Normalized shear stress vs. depth/width ratio for specimens in G1 

 

 

Figure 18: Normalized shear stress vs. depth/width ratio for specimens in G2 

 

Figure 19: Normalized shear stress vs. depth/width ratio for specimens in G3 
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Figure 20: Normalized shear stress vs. depth/width ratio for specimens in G4 

 

Curve fitting Figure (17) to (20), yields the following equations: 

𝑦 = 3 ∗ 10−8𝑥2 − .0001𝑥 + 0.2575  for G1 with R2= 0.9829                                   (12)    
𝑦 = 3 ∗ 10−8𝑥2 − .0001𝑥 + 0.2287  for G2 with R2=0.9832                                    (13)                                                                                                   
𝑦 = 2 ∗ 10−8𝑥2 − .0001𝑥 + 0.1845  for G3 with R2=0.9821                                    (14)                                                                                                   
𝑦 = 2 ∗ 10−8𝑥2 − .00009𝑥 + 0.1554   for G4 with R2=0.961                                   (15)                                                                                                                                                                                    
The first term in the equations can be represented by factor α where α =1 in N.S.C.            
𝑓𝑐𝑢=25 Mpa , α =2/3 in H.S.C.  𝑓𝑐𝑢=87.5 Mpa. The second term is almost constant. By 

trial and error, the third term is found equal 0.24α√𝜌
3  .    

The following equation was derived: 

𝑞 = 𝑆√𝑓𝑐𝑢  (3) 

Where: 

S = (3*10-8) α t2 – (1*10-4) t + 0.24α√𝜌
3

 

α     = 1            𝑓𝑐𝑢=25 Mpa     

       = (2/3)      𝑓𝑐𝑢 =87.5 Mpa    

t     beam depth 

ρ     longitudinal reinforcement ratio = 
As

bd
 

 

CONCLUSIONS 

The results of the numerical analysis could be summarized as follows: 

The analytical models gave good agreement with the experimental results. 

For the same longitudinal reinforcement ratio, and for the same (shear 

span/effective length) ratio, and the same compressive strength of concrete, 

increasing the effective depth, decreases the shear strength.    

As the longitudinal reinforcement ratio increase the shear strength increase.  

As the concrete compressive strength increase the shear strength increase.  

The decreasing rate of shear strength decreases as the effective depth increase. 

The longitudinal reinforcement ratio and the depth should be taken into 

consideration in shear strength code formula to give a safe and convenient 

design for shear. 
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