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ABSTRACT

The aim of this study is to investigate the effect of thickness and width of tie beams
on footings under eccentric loading. The chosen model contains 16 footings connected
with tie beams. However the effect of thickness and width of tie beams on vertical and
horizontal displacement as well as the contact pressure, moment and shear have been
investigated. The footing dimensions are (2.0*2.0) m for corner footings, (2.50*2.50) m
for edge footings and (3.0*3.0) m for middle footings). The model contains three
critical footings with dimensions as follows: - (2.50 * 1.50) m, (2.0 * 1.0) and (1.0 * 1.
0) m respectively. Isolated footings have fixed depth (D) =0.5m connected with tie
beams with variable width (b=0.6D, 0.7D, 0.8D, 0.9D and 1.0D) m and thickness
(h=1.0D, 1.5D, 2.0D and 2.5D). A finite element package of the PLAXIS 3D-
foundation version 15 has been used to simulate theoretically the model. All of the
above assumptions have used with variable depth of footing (Df =0.0D, 0.5D, 1.0D and
1.5D). For eccentric loading it was found that the vertical displacement (settlement)
and horizontal displacement under footings connected with tie beams decreases with
increasing the thickness and width of tie beams by about (20 to 40)%. The settlement
becomes almost uniform along axis and increasing the thickness and width of tie beam
decrease the differential settlement. Also it was found that the values of the total normal
stress (contact pressure) decrease with increasing width of tie beam and tie beam
thickness by about (30 to 40)%. It was also found the bending moment as well as shear
force values decrease with increasing the thickness and width of tie beams by about
(30to 40 %).

Key words: Tie beam, Settlement, Contact pressure, Plaxis, Finite element, Eccentric,
Footing
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1.INTRODUCTION

In civil engineering constructions, foundations may be subjected to eccentric loads.
Footing located at property lines and machine foundation are some examples where the
foundations experience eccentric loading. If the load is eccentric-inclined, the stress
distribution below the footing will be non-uniform causing unequal settlement at the
two edges. Tie beams resting directly on soil are widely used to connect shallow
footings, including strap or eccentric footing, in two directions. Practically, strap beam
for eccentric footings are used with other tie beams. However, this system of beams and
footings is considered as rigid and must be treated as one entity, where the tie beams
play important role for redistribution of column loads between footings through it. El-
Kasaby, E. A.A. (1993) [6] investigated the behavior of strap footings with tie-beam
resting on soil. The effects of soil flexibility and beam stiffness on contact pressure,
settlement and bending moment of strap foundation was presented. The finite difference
technique was used and the elastic subgrade reaction theory was applied to study and
solve the footing beam system. Partra, C. R., et all. (2005) [10] reported the results of
model loading tests performed on an eccentrically loaded strip foundation supported by
multi-layered geogrid-reinforced sand. Only one type of geogrid and sand at one
relative density of compaction were considered. Based on the laboratory test results, an
empirical relationship for the reduction factor was developed. This relationship can be
used to estimate the ultimate bearing capacity under eccentric loading. Almasmoum
A.A. (2009) [1] studied the influence of strap beams connected with eccentric footing
and tie beams connected with centric interior footing on the contact pressure. The
percentage of column loads transmitted by tie beams and the percentage ratio of vertical
displacement to length of tie beam as well as maximum percentage ratio of differential
displacement to length of tie beam were investigated. Sadoglu, E., et al. (2009) [13]
investigated the decrease of the ultimate loads with increasing eccentricity and compare
the experimental results with commonly used approaches. An experimental system was
produced and used to run the tests. The experimental system consists of a tank, model
footing, sand, loading mechanism, etc. A single woven geotextile sheet was placed
horizontally below the footing’s base at a depth of half of the footing’s width. The
measured decreases in ultimate loads with increasing eccentricities in the unreinforced
tests within the core were in good agreement with Meyerhof’s approach, while
customary analysis is a little on the conservative side. Outside the core, Meyerhof’s
approach is on the conservative side in this case. Nawghare, S.M., et al. (2010) [9]
investigated the bearing capacity of eccentrically loaded footing. Footings of different
size and shape were used for testing. Testing for bearing capacity of centrally loaded
footing and then for eccentrically loaded footing with different ‘e/B’ ratio was carried
out. For every footing bearing capacity and settlement were found out for central as well
as eccentric loading. These results of central and eccentric loading were compared with
each other for same footing. The results of different footings were also compared for
central and eccentric loading. By comparing these results effect of eccentricity, size and
shape of footing on bearing capacity were investigated. Elsawaf, M. and Nazir, A.
(2012) [8] presented an experimental study of the behavior of an eccentrically loaded
model ring footing resting on a compacted replaced layer of soil that overlies on
extended layer of loose sand. Load configuration was designed to simulate ring footing
under vertical loads and overturning moment caused by lateral loads. The effect of the
depth and relative density of the replaced sand layer were investigated. The results
indicate that the behavior of an eccentrically loaded ring footing significantly improved
with increasing the depth and the relative density of the replaced compacted sad layer.
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Patra (2012) [12] conducted a number of laboratory model tests to determine the
ultimate bearing capacity of strip foundation on sand subjected to vertical and inclined
eccentric loads. Based on some of those laboratory test results, an empirical relationship
has been developed to estimate the average settlement of the foundation while being
subjected to an average allowable eccentric load per unit area, where the applied load is
vertical. The empirical relationships presented were for embedment ratio Df/B varying
from zero to one, and the eccentricity ratio e/B varying from zero to 0-15. Atalar, C., et
al (2013) [2] determined the bearing capacity of shallow strip foundation subjected to
eccentrically inclined load rested on dense sand. The embedment ratio (ratio of the
depth of embedment Df to the width of the foundation B) was varied from zero to one.
Load eccentricity (e) was varied from zero to 0.15B and the load inclination with the
vertical (o) was varied from zero to 20 degrees. An empirical nondimensional reduction
factor was developed. This reduction factor was the ratio of the bearing capacity of the
foundation subjected to an eccentrically inclined load (average eccentrically inclined
load per unit area) to the bearing capacity of the foundation subjected to a centric
vertical load. Dhar, P., et al. (2013) [4] presented the results of laboratory model tests
on behavior of a model footing resting on sand under eccentric — inclined load. Initially,
the behavior of footing subjected to axial load was studied to compare with the shape
factors at the surface footings. The influence of shape of footing on ultimate load
carried capacity due to the different shape of model footings were investigated using
bearing capacity ratio (BCR) a non-dimensional factor. The load settlement
characteristics of footings of different shapes rested on the surface of sand of same area
were also investigated through the load settlement curves. Pusadkar, S.S. Navkar, Y.S.
(2016) [11] evaluated the effects of eccentricity and inclination of load along with
eccentric-inclined load on performance of square footing resting over sand. A laboratory
load tests were conducted on the model footing with eccentric load and/or inclined load.
The results showed that the bearing capacity decreases with increasing the load
eccentricity and load inclination. Dhatrak, A.l., et al. (2016) [5] presented the results of
laboratory model tests on behavior of a model footing resting on sand under eccentric
load. The ultimate load carrying capacity of a circular and ring footing resting on
surface dense sand was investigated. The conventional method of footing design
requires that footing must possess sufficient safety against failure and settlement was
kept within the allowable value. Benayad, S., et al (2017) [3] examined the stresses
distribution and contact pressure underneath eccentric footing subjected to the variation
of its thickness and eccentricity using 2D finite element modeling. The FEM analysis
was carried out using ABAQUS software program. The results indicated that stresses
were higher along edges of footing than at center when footing is subjected to the
variation of its thickness and eccentricity. The increase in footing thickness caused a
decrease of maximum contact pressure and an increase in contact area. However, it
could found that the maximum contact pressure increased proportionally with the
increase in eccentricity, while contact surface decreased. Elsamny, M. K., et al (2017)
[7] investigated the behavior of two isolated footings of different dimensions connected
with tie beam. The dimensions of one footing were fixed. The width of the two footings
was fixed (B=1.0m). The thicknesses of the two footings have variable
(t=0.3B,0.4B,0.5Band0.6B). The tie beam between footings have variable lengths
(Ltie=0.5B,1.0B,1.5B and 2.0B). The height of the tie beams was variable
(h=1.0t,1.5t,2.0t and 2.5t) and the width of tie beam was fixed (b=0.25m). All of the
above assumptions have used with variable effect of depth of footing
(df=0.0B,0.5B,1.0B and 1.5B). In addition, the angle of internal friction in sandy soil
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was taken (@=30°,35°,40°and 45°). However, cohesion for clayey soil was taken as
(¢=10,15,20and 25) kN/m2. It was found that the vertical and horizontal displacement
increased with increasing the length of tie beam. Also, the vertical and horizontal
displacement decreased with increasing the angle of internal friction in sandy soil as
well as cohesion in clayey soil. The vertical and horizontal displacement decreased with
increasing the height of tie beam.

2. FINITE ELEMENT PROGRAM

A finite element package of the PLAXIS 3D-foundation version 15 has been used for in
order to simulate the chosen model. Mohr-Coulomb model has been used to represent
the soil behavior. The material properties for soil, tie beams and foundations which have
been used in the finite element model are shown in table (1) and table (2).

Table 1 The material properties for the used soil

Parameters sandy soil unit
Unsaturated soil weight 17 (KN/m°)
Saturated soil weight 20 (KN/m?)
Modules of elasticity of soil 20000 - 70000 (kN/m?)
Poisson ratio 0.30
Thickness of footing 0.50 (m)
Angle of internal friction 30°, 35°,40° and 45° °
Dilatancy 0,5,10 and 15

Table 2 Investigated cases of study

Case No. Tie Beam Dimensions [m]
Breadth Thickness

1 1.00D
2 1.25D
3 0.6D 150D
4 175D
5 2.00D
6 1.00D
7 125D
8 0.7D 150D
9 175D
10 2.00D
11 1.00D
12 1.25D
13 0.8D 1.50D
14 1.75D
15 2.00 D
16 1.00D
17 1.25D
18 0.9D 1.50D
19 1.75D
20 2.00D
21 1.00D
22 1.25D
23 1D 150D
24 1.75D
25 2.00 D
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In the present study, a theoretical analysis has been done for model of neighbors
from two sides contains 16 footings connected with tie beam. Figures (1) and (2)
presented the chosen model. The footing dimensions are (2.0*2.0) m for corner
footings, (2.50*2.50) m for edge footings and (3.0*3.0) m for middle footings. The
model contains three critical footings (F1, F2 and F3) with dimensions (2.50 * 1.50) m,
(2.0 * 1.0) and (1.0 * 1. 0) m respectively. Isolated footings have fixed depth =0.5m
connected with tie beams with variable width (b=0.6D, 0.7D, 0.8D, 0.9D and 1.0D) and
variable thickness (h=1.0D, 1.5D, 2.0D and 2.5D). The angle of internal friction in
sandy soil has been taken (@=30°, 35°, 40°and 45°). All of the above assumptions have
done with variable effect of depth of footing (Df =0.0D, 0.5D, 1.0D and 1.5D).
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Figure 2 Isolated footings connected with beams model

3. RESULTS OF FINITE ELEMENT

Figures from (3) to (5) show the deformed mesh of soil and vertical displacement of soil
as contour lines as well as shading at depth of footing=0.50D, thickness of tie
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(ht)=1.0D, width of tie(bt)=0.6D and angle of internal friction(p)=30°. From these
figures, it can be shown that the footings act as one combined footing.

Figure 3 Deformed mesh of soil at depth of footing (d.SO)D and angle of internal friction (¢) =
30° for sand soil b, =0.6D and h,;=1.00D)
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Figure 4 Total displacements in soil as contour lines for angle of internal friction (¢) = 30°, bt
=0.6D, Df = (0.50)D and ht =1.00D) at axis (D)
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Figure 5 Total displacements in soil as shading for angle of internal friction (¢) = 30°, b, =0.6D,
Df = (0.50)D and h; =1.00D) at axis (D)

Figures from (6) to (8) show the deformed mesh of soil and vertical displacement of
soil as contour lines as well as shading at depth of footing=0.50D, thickness of tie
(ht)=1.50D, width of tie(bt)=0.6D and angle of internal friction((p)=300. From these
figures, it can be shown that the footings act as one combined footing.

Figure 6 Deformed mesh of soil at depth of footing (OtSOD) and angle of internal friction (¢) =
30° for sand soil by =0.6D and h;=1.50D)
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Figure 7 Total displacernénts in soil as contour lines for angle of internal friction (¢) = 30°, by
=0.6D, Df = (0.50)D and h; =1.50D) at axis (D)
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Figure 8 Total displacements in soil as shading for angle of internal friction (¢) = 30°, b; =0.6D,
Df = (0.50)D and h; =1.50D) at axis (D)

Figures from (9) to (11) show the deformed mesh of soil and vertical displacement
of soil as contour lines as well as shading at depth of footing=1.50D, thickness of tie
(ht)=1.0D, width of tie(bt)=1.0D and angle of internal friction()=30°. From these
figures, it can be shown that the footings act as one combined footing.

Figure 9 Deformed mesh of soil at depth of footing (wl-'.gO)D and angle of internal friction (¢) =
30° for sand soil b; =1.0D and h;=1.00D)

el = ———— g

| e
2 .

y

"0

EEBEEEES

Eooms R
BEBEFEE

N: 24000
0: 2000 0 @
P: 2000 - =

Figure 10 Total displacements in soil as contbur lines for at depth of footing (1.50)D and angle
of internal friction (¢) = 30° for sand soil b; =1.0D and h;=1.00D)

Figure 11 Total displacements in soil as shading at depth of footing (1.50)D and angle of
internal friction (¢) = 30° for sand soil b, =1.0D and h;=1.00D)
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Figures (12) and (13) show the settlement under footing (F2) at different tie beam
dimensions at depth of footing Df=0.0D along x-axis. From these figures, it can be
shown that the settlement decreases with increasing the dimensions of tie beams by
about (20 to 40)%.
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Figure 12 Distribution of settlement under footing for different thickness of tie beam at (br;
=0.6D) and D=0.0D along x-axis
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Figure 13 Distribution of settlement under footing for different thickness of tie beam at (h;
=1.0D) and D¢=0.0D along x-axis
Figures (14) and (15) show the settlement under footing (F2) at different tie beam
dimensions at depth of footing Ds=0.0D along z-axis. From these figures, it can be
shown that the settlement decreases with increasing the dimensions of tie beams by
about (20 t040)%.
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Figure 14 Distribution of settlement under footing for different thickness of tie beam at (br;
=0.6D) and D¢=0.0D along z-axis
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Figure 15 Distribution of settlement under footing for different thickness of tie beam at (h;
=1.0D) and D=0.0D along z-axis
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Figures (16) and (17) show the contact pressure under footing (F2) at different tie
beam dimensions at depth of footing Df=0.0D along x-axis. From these figures, it can be
shown that the contact pressure values decrease with increasing the dimensions of tie
beams by about (30 to 40)%.
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Figure 16 Distribution of contact pressure under footing for different thickness of tie beam at
(br; =0.6D) and D¢=0.0D along x-axis
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Figure 17 Distribution of contact pressure under footing for different thickness of tie beam at

(h+1 =1.0D) and Ds=0.0D along x-axis

Figures (18) and (19) show the contact pressure under footing (F2) at different tie

beam dimensions at depth of footing Df=0.0D along z-axis. From these figures, it can

be shown that the settlement decreases with increasing the dimensions of tie beams by

about (30 t040)%.
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Figure 18 Distribution of contact pressure under footing for different thickness of tie beam at
(br; =0.6D) and D=0.0D along z-axis
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Figure 19 Distribution of contact pressure under footing for different thickness of tie beam at
(ht; =1.0D) and D=0.0D along z-axis
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Figures (20) and (21) show the settlement under footing (F3) at different tie beam
dimensions at depth of footing Ds=0.0D. From these figures, it can be shown that the

settlement decreases with increasing the dimensions of tie beams by about (20 t040)%.
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Figure 20 Distribution of settlement under footing for different thickness of tie beam at (br;
=0.6D) and D#=0.0D
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Figure 21 Distribution of settlement under footlng for different thickness of tie beam at (h;
=1.0D) and D=0.0D

Figures (22) and (23) show the contact pressure under footing (F2) at different tie
beam dimensions at depth of footing D=0.0D.
From these figures, it can be shown that the contact pressure values decrease with
increasing the dimensions of tie beams by about (30 t040)%.
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Figure 22 Distribution of contact pressure under footing for different thickness of tie beam at
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4. ANALYSIS OF RESULTS

Figures (24) and (25) show the effect of tie beam dimensions on settlement for footing
(1). These figures show that the settlement decreases with increasing tie beam thickness
and width. However, increasing tie beam dimensions decreases the settlement by about
(20-40)%.
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Figure 24 Comparison between thickness of tie beam and settlement for different angles of
internal friction (¢) at D= 0.00D and by, = 0.6D
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Figure 25 Comparison between width of tie beam and settlement for different depths of footing
at angle of internal friction ® = 30° and hy; = 1.0D

Figures (26) and (27) show the effect of tie beam dimensions on contact pressure
values for footing (1). From these figures the contact pressure values decrease with
increasing the thickness and width of tie beam. However, increasing the dimensions of
tie beam decrease the contact pressure values by about (30-40)%.
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Figure 26 Relationship between contact pressure and thickness of tie beam for different depths
of footing at angle of internal friction ® = 30° and b1, = 0.6D

CONTACT PRESSURE KN/M2

06D ] 03D 05D
WIDTH OF TIE BEAM (M)

Figure 27 Relationship between contact pressure and width of tie beam for different depths of
footing at angle of internal friction ® = 30° and hr; = 1.0D
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Figures (28) and (29) show the effect of tie beam dimensions and depth of footing
on settlement for footing (2). These figures show that increasing the thickness of tie
beam from 1.0D to 2.0D decreases the settlement by about 20% as well as increasing tie
beam width from 0.6D to 1.0D decreases the settlement by about 40%.
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Figure 28 Comparison between thickness of tie beam and settlement for different angles of
internal friction (¢) at D= 0.00D and b, = 0.6D
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Figure 29 Comparison between width of tie beam and settlement for different depths of footing
at angle of internal friction (¢) = 30° and hy, = 1.0D
Figures (30) and (31) show the effect of tie beam dimensions at different depths of
footing on contact pressure values for footing (2). From these figures the contact
pressure values decrease with increasing the thickness and width of tie beam.
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Figure 30 Relationship between contact pressure and thickness of tie beam for different depths
of footing at angle of internal friction ® = 30° and b1, = 0.6D
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Figure 31 Relationship between contact pressure and width of tie beam for different depths of
footing at angle of internal friction ® = 30° and ht; = 1.0D
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Figures (32) and (33) show the effect of tie beam dimensions and depth of footing
on settlement for footing (3). These figures show that the settlement decreases by 20%
with increasing thickness from 1.0D to 2.0D as well as increasing the width of tie beam
from 0.6D to 1.0D decreases the settlement by about 40%.
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Figure 32 Comparison between tie beam thickness and settlement for angles of internal friction
(9) at D= 0.00D and by; = 0.6D
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Figure 33 Comparison between width of tie beam and settlement for different depths of footing
at D= 0.00D and hy; = 1.0D

Figures (34) and (35) show the effect of tie beam dimensions for different depths of
footing on contact pressure values for footing (3).
pressure values decrease with increasing tie beam thickness and width by about (30-

40)%.
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Figure 34 Relationship between contact pressure and thickness of tie beam for different depths

of footing at angle of internal friction @ = 30°
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Figure 35 Relationship between contact pressure and width of tie beam for different depths of
footing at angle of internal friction ® = 30° and ht; = hy; = 1.0D
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Figures (36) and (37) show the effect of tie beam dimensions and depth of footing
on horizontal displacement in x and z direction. From these figures the horizontal
displacement in x and z directions decreases with increasing the thickness and width of
tie beam. However, increasing the tie beam dimensions decreases the displacement by
about (20-40)%.
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Figure 36 Comparison between thickness of tie beam and displacement in x- direction for
different angles of internal friction (@) at D
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Figure 37 Comparison between width of tie beam and displacement in z- direction for different
depths of footing at D= 0.00D and hy; = 1.0D

Figures (38) to (40) show the relationship between settlement and distance along
axis's (D, 2 and 4) for different thickness of tie beam at width of tie beam (bt;) =0.6D,
depth of footing Ds = 0.0D and angle of internal friction=30°. From these figures
increasing the thickness and width of tie beam decrease the settlement. However
increasing thickness and width of tie beam decrease the differential settlement and
almost uniform settlement has been obtained.
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Figure 38 Relationship between settlement and distance along axis (D) for different thickness
of tie beam at angle of internal friction = 30, b,= br,=0.6D and D¢=0.0D
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Figure 39 Relationship between settlement and distance along axis (2) for different thickness of
tie beam at angle of internal friction = 30°, by; =0.6D and D¢=0.0D

SETTLEMENT (MM}

239



SETTLEMENT (MM)
E 8 2 8 & 3

Figure 40 Relationship between settlement and distance along axis (4) for different thickness of
tie beam at angle of internal friction = 30°, by; =0.6D and De=0.0D

Figure (41) shows the relationship between settlement and distance along axis (D) for
different widths of tie beam at thickness of tie beam (hti) = (ht2) =1.0D, depth of
footing D = 0.0D and angle of internal friction=30°. From this figure increasing the

Figure 41 relationship between settlement and distance along axis (D) for different widths of tie
beam at angle of internal friction = 30°, De= (0.0) D and hy,= hr,=1.0D
Figures (42) to (44) show the relationship between contact pressure and distance
along axis's (D, 2 and 4) for different thickness of tie beam at width of tie beam (b+y)
=0.6D, depth of footing Ds = 0.0D and angle of internal friction=30°. From these figures
increasing the thickness of tie beam from 1.0D to 2.0D decreases the contact pressure
values by about 30%.
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Figure 42 Relationship between contact pressure and distance along axis (D) for different
thickness of tie beam at angle of internal friction = 30°, by, = by, = 0.6D and D=0.0D
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Figure 43 Relationship between contact pressure and distance axis (4) for different thickness of
tie beam at angle of internal friction = 30° br;=0.6D and D¢=0.0D
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Figure 44 Relationship between contact pressure and distance along axis (2) for different

thickness of tie beam at angle of internal friction = 30°, by;=0.6D and D¢=0.0D

Figures (45) to (47) show the relationship between contact pressure and distance
along axis's (D,2 and 4) for different widths of tie beam at thickness of tie beam (hy) =
(htz) =1.0D, depth of footing D; = 0.0D and angle of internal friction=30°.
From this figure increasing the thickness of tie beam from 0.6D to 1.0D decreases the
contact pressure values by about 40%.
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Figure 45 Relationship between contact pressure and distance along axis (D) for different
widths of tie beam at angle of internal friction = 30°, D¢ = 0.0D and hr; = hy,= 1.0D
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Figure 46 Relationship between contact pressure and distance along axis (4) for different
widths of tie beam at angle of internal friction = 30°, hy»,=1.0D and D=0.0D
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Figure 47 Relationship between contact pressure and distance along axis (2) for different
widths of tie beam at angle of internal friction = 30°, D¢ = 0.0D and hy;=1.0D
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Figures (48) to (51) show the distribution of bending moment of beam- footing
system along axis's (D, 2 and 4) and dimensions of tie beam at angle of internal friction
= 30°. From this figure the bending moment values decrease with increasing the
dimensions (thickness and width) of tie beam. However, increasing the dimensions of
tie beam decrease the bending moment values by about (30 to 40)%.
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Figure 48 Distribution of bending moment of beam- footing system along axis (D) for different

thickness of tie beam at angle of internal friction = 30%and by; = 0.6D
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Figure 49 Distribution of bending moment of beam- footing system anng axis (D) for different

widths of tie beam at angle of internal fr|ct|on =30%and hy; = 1.0D
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Figure 50 Distribution of bending moment of beam- footing system along axis (2) for different

thickness of t|e beam at angle of internal frlctlon =30° “and by, = 0.6D
bt=0.6D

— | I j < b1=0.6D

| bt=09D ——

bt=1. OD
ﬁv ‘

Ny

emsm L

)

Moment (kN.m)
BEkis

d 2 4 ] E tU 2 1
Distance along axis (1) (m)

Figure 51 Distribution of bending moment of beam- footing system along axis (4) for different
widths of tie beam at angle of internal friction = 30° and hy, = 1.0D

Figures (52) to (54) show the distribution of shear force diagram of beam- footing
system along axis's (D and 2) and dimensions of tie beam at angle of internal friction =
30°. From these figures the shear force values decrease with increasing the dimensions
(thickness and width) of tie beam. However, increasing the dimensions of tie beam
decrease the bending moment values by about (30 to 40)%.
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5. CONCLUSIONS
From the present study the followings are concluded:-

[ ]
directions decrease with increasing thickness
(20 to 40)%.

Increasing the thickness and width of tie

The settlement under footings and horizontal displacement in both x and z

and width of tie beams by about

beam decrease the settlement.

However, increasing the thickness and width of tie beam decrease the differntial

settlement and almost uniform has been obtain

The contact pressure values decrease with inc
tie beam by about 30 to 40%.

tie beams by about 30 to 40%.

The shear force values decrease with increas
beams by about 30 to 40%.
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