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  ملخص البحث:

یحتوى حوض نھر النیل وخصوصا أعالى النیل على مسطحات ھائلة من المستنقعات والمسحات المائیة الأخرى التى 
. یعد اعداد خرائط دوریة فى فھم المیزان المائي لحوض النیلتحتاج الى متابعة دوریة ومنتظمة نظرا لأھمیتھا 

وذلك لقلة المعلومات والقیاسات المتاحة فى ھذه المناطق  للمسطحات المائیة فى المناطق الاستوائیة أمرا شدید الصعوبة
وخصوصا اثناء الفیضانات. یھدف ھذا البحث الى وضع تقنیة اوتوماتیكیة واسلوب عمل جدیدین ومتكاملین لمواجھة 

استخدام  تمھذه التحدیات واعداد خرائط للمسطحات المائیة ذات دقة افقیة عالیة ومعدل تكرار زمنى مناسب ومنتظم. 
 الدراسة لمنطقة) AQUA) و (TERRA( منصات من كل من البیانات ) وتحمیل MODIS صور القمر الصناعى (

بعد اثبات  Open Water Likelihood (OWL)تم استخدام طریقة . ٢٠١٤ عام حتى ٢٠٠٠ عام من للفترة
 على الغطاء السحابى غلبالت تم النباتى. خصوصا عند تداخل المیاه مع التربة والغطاء المیاه فى الكشف على حساسیتھا

لكل منصة  أیام المركبة ٨واستخدام بیانات ال  TERRAو  AQUA بیانات بین الجمع خلال من ممكن قدر أكبرب
 خرائطال معایرة تتم. المتبقیة الفجوات لملءكفئ  إحصائي منھج تطبیق إلى بالإضافة لتقلیل الفجوات بقدر الامكان ھذا

تحلیل صور أقمار صناعیة أخرى أعلى بكثیر فى الدقة الأفقیة مثل  عن ناتجة میاه خرائطب OWLالمحسوبة من 
Landsat ETM+ وLandsat OLI . تم بعد ھذا تطبیق النسبةOWL المیاه خرائط من زمنیة سلسلة لاعداد المثلى 

یة الأرض القیاساتتتوافق الخرائط المحسوبة الى حد كبیر مع . ٢٠١٤ عام حتى ٢٠٠٠ عام من الروصیرص سد لخزان
تحت  الداخلیة المائیة لمسطحاتكفاءة عالیة فى اعداد خرائط ل وضعت التي التقنیة الجدیدة أثبتت. المتاحة للخزان

  .ظروف الغمر المختلطة
  Abstract: 

Continuous monitoring of inland water bodies like lakes, reservoirs, and wetlands is an 
essential part for successful water resources management. The Upper Nile basin contains 
vast areas of wetlands and water bodies that need continuous monitoring as huge amount of 
water is lost yearly through them in the form of evaporation and seepage. Understanding 
the water budget of these inland water bodies is not possible without knowing the 
inundation extent on a consistent spatial and temporal basis. Mapping wetlands in tropical 
regions is a highly challenging process due to lack of field measurements and extreme 
cloud cover. The aim of this study is to introduce a more accurate, robust, and automated 
technique to define the extent and variation of inland water bodies in tropical regions all the 
year round. Due to lack of measurements and ground data, the introduced technique 
depends mainly on remote sensing and Earth observation data collected from space. 
MODIS data is selected for its high temporal (1-2 times daily) and spectral resolution. Data 
from both the Terra and Aqua platforms is downloaded for the study area for the period 
from 2000 till 2014. Several water detection techniques are assessed and the Open Water 
Likelihood Index (OWL) is adopted for its proved sensitivity in detecting water over mixed 
inundated pixels of water, bare soil, and vegetation, calculating fraction of water for each 
pixel. As with all optical sensors, cloud contamination represents a great challenge to using 
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the data directly. This is controlled as much as possible by combining data from 8-day 
composites from both platforms in addition to applying a statistical approach for filling in 
the remaining gaps. Due to lack of ground truth data, daily OWL maps are compared to 
water maps generated from the much higher spatial resolution Landsat ETM+ and OLI 
sensors for certain times of the year and showed substantial to strong agreement. An 
optimum OWL threshold has been determined and applied to generate a time series of 
water maps over the Roseires Dam Reservoir from 2000 till 2014. The generated time 
series agrees well with ground measurements. The developed methodology proved to be 
both efficient and consistent is mapping inland water bodies under mixed inundation 
conditions                              
Keywords: Remote Sensing, Wetlands, MODIS, OWL, Roseires Dam, Mixed Inundation, 

Gap Filling.                                                                                             

1. Introduction: 

Continuous monitoring of inland water bodies like lakes, reservoirs, and wetlands is an 
essential part for a successful water resources management. Providing consistent spatial and 
temporal maps for inland water bodies is essential to help understanding and identifying 
changes in their ecosystems. Special concern worldwide is directed to water bodies in 
tropical regions as they present about half of the world’s wetland areas (H.U. Neue et al, 
1997) and they play a vital role in the global carbon and water cycle (The Kyoto and 
Carbon initiative, Jaxa, Japan, 2009).                                          
The Upper Nile basin contains vast areas of wetlands and water bodies that are either 
permanent or seasonal. Since huge amount of water is lost yearly from these water bodies 
in the form of evaporation and seepage, understanding the water budget of these inland 
water bodies is not possible without knowing the inundation extent on a consistent temporal 
basis.                                                                                           
Mapping water bodies in tropical regions is a highly challenging process due to: limited 
accessibility during high floods, limited or no ground data available including surveys, flow 
and water level measurements; and typically extreme cloud cover especially during the 
rising stage of flood where maximum inundation of water bodies is expected. In addition to 
the above, water runs between vegetation and bare soil making the delineation process 
more challenging. 

The science of detecting water from space has improved significantly during the last years 
due to the invention of new advanced passive and active satellite sensors that orbit the earth 
all the time. It has been proven that remote sensing data and techniques can be used to 
detect water and monitor floods efficiently (Ralf W. Tiner et al., 2015). In order to capture 
variation in water bodies throughout the year given the lack of data and inaccessibility 
during flood events, it is required to routinely acquire freely available remote sensing data 
which have regional coverage at an acceptable spatial resolution.                                                                       
Landsat imagery can provide the appropriate spatial detail for hydrological modeling, but 
its temporal frequency of 16 days is not suited to capturing the temporal dynamics of many 
flood events. In addition, acquiring images every 16 days reduces the chance of collecting 
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enough cloud free images of the study area. Other high resolution optical sensors like 
Quickbird, IKONOS, SPOT, etc…. also do not provide the required temporal resolution in 
addition to the high cost of acquiring data for large study areas. On the other hand, NASA’s 
Moderate Resolution Imaging Spectro-radiometer (MODIS) sensors have proven high 
efficiency in mapping surface water at moderate spatial resolution (250 – 1000m). The 
medium resolution of the MODIS sensors make it not suitable to map smaller and narrow 
water features, however, MODIS still provides consistent temporal monitoring by acquiring 
images 2 times daily for the same location from two platforms; the TERRA platform 
(10:00am) and AQUA platform (1:00pm) (Ticehurst et al., 2013). Landsat data has been 
used many times in the literature as “ground truth” data to validate the inundated flood 
plain from MODIS due to its relatively high spatial resolution (Guerschman et al, 2011).                          
All historical MODIS data are readily available for the whole world from year 2000 till 
present and can be downloaded from the NASA LPDAAC website. MODIS bands 1 (Red) 
and 2 (NIR) are at 250m pixel size and have been used to capture large global flood events 
through the Dartmouth Flood Observatory (Brakenridge and Anderson 2006), as well as 
environmental monitoring of seasonal flood patterns on floodplains (Ward et al., 2013). 
This is further enhanced later through NASA Near Real Time (NRT) MODIS Global Flood 
Map where daily MODIS flood maps are produced at a global scale of 250m spatial 
resolution (Beta Science product is released in October 2014).                                                                             
Techniques for using MODIS data for detecting water bodies and estimating flood plain 
inundation are continuously evolving. Given the strong sensitivity of the SWIR (Short 
Wave Infrared) wavelength to water, MODIS SWIR bands 6 and 7 (500m pixels) have 
been used for inundation mapping through the use of indices such as the Normalized 
Difference Water Index (NDWI) (McFeeters, S.K., 1996), and the modified Normalized 
Difference Water Index (mNDWI) (Xu, 2006). The above mentioned methods have been 
proved to be most effective for open water bodies where most of the pixels are pure water 
with no mixed inundation.                             
Due to the large size of the MODIS pixel, it’s more likely to have pixels with mixed water-
vegetation or water-bare soil reflectance. This is typically the case in detecting water bodies 
and wetlands in the Upper Nile Basin. New methods have been introduced to calculate the 
fraction of water in a MODIS pixel. Water fraction mapping of MODIS pixels has been 
applied by Weiss and Crabtree (2011) who used the Normalized Difference Vegetation 
Index (NDVI), NDWI and tasseled cap to derive water fraction at a 1 km pixel with 
reasonable accuracy but it was   computationally intensive (Ticehurst, et al, 2013).                                            
The method adopted in this study to detect water bodies under mixed inundation is the 
Open Water Likelihood (OWL) Algorithm that was developed by Guerschman et al, 2011. 
The method has been verified through several studies that it is sensitive to capture the 
dynamics of water movement when compared to stream flow data for large regional scales 
(Ticehurst et al, 2014). Ticehurst also stated that “The MODIS OWL algorithm has proved 
to be the best to date mapping tool for flood plains”. This will be discussed later in the 
following sections.                                                        
The target of this study is to develop a new complete workflow for delineating water bodies 
in tropical regions under mixed inundation. The workflow relies on applying the MODIS 
OWL algorithm to MODIS satellite images after being calibrated against ground truth data 
such as ground measurements or higher resolution water maps. A robust Gap filling 



     

٤٨ 
 

technique is then applied to overcome the problem of extreme cloud cover that is 
characteristic for tropical regions and limits the usefulness of optically collected remote 
sensing data. The workflow, once calibrated, provides consistent spatial and temporal maps 
for inland water bodies through a fully automated process that require minimum human 
input.  The methodology is then applied to create a map time series of water body extent for 
the Roseires Reservoir that is located on the Blue Nile, Upper Nile Basin.                     
2. Materials and Methods: 

2.1. MODIS OWL Algorithm: 

In the MODIS OWL algorithm, Guerschman et al. (2011) used a detailed empirical 
approach with the MODIS bands, utilizing the strong relationship between NDVI, NDWI, 
the SWIR bands, and other factors calculated from Digital Elevation Models (DEM), 
producing fractional water coverage at 500m pixel size. One of the advantages of the OWL 
algorithm is that it is fast and easy to apply on multi-temporal datasets, compared to more 
complex algorithms. The MODIS OWL method developed by Guerschmann et al. (2011) 
calculates the fraction of water within a MODIS pixel by:                                                                             

       ௪݂ ൌ
ଵ

ଵାୣ୶୮	ሺ௭ሻ
                  Eq. (1) 

where, z is defined as:                                                                                                  

ݖ ൌ ଴ߚ ൅ ∑ .௜ߚ
ହ
௜ୀ଴  ௜               Eq. (2)ݔ

fw is the estimated fraction of standing water, xi are independent variables, and βi are 

parameters fitted empirically. The values of β for different i are defined as follows: 

β0 = −3.41375620                                
β1 = −0.000959735  x1 = SWIR band 6 (reflectance*10000) 
β2 = 0.00417955330   x2 = SWIR band 7 (reflectance*10000) 
β3 = 14.1927990         x3 = NDVI 
 β4 = −0.430407140       x4 = NDWI (Gao, 1996) 
β5 = −0.0961932990      x5 = MrVBF (Gallant and Dowling, 2003) 

MrVBF is the Multi-resolution Valley Bottom Flatness index as described by Gallant and 
Dowling, 2003.                                                                                                  
The NDVI for MODIS data shall be calculated as                                                            

ܫܸܦܰ ൌ
ఘಿ಺ೃିఘೃಶವ

ఘಿ಺ೃାఘೃಶವ
ൌ

஻௔௡ௗ	ଶି஻௔௡ௗ	ଵ

஻௔௡ௗ	ଶା஻௔௡ௗ	ଵ
		                         Eq. (3)  

The NDWI for MODIS data shall be calculated as                                                       

ܫܹܦܰ ൌ
ఘಿ಺ೃିఘೄೈ಺ೃ

ఘಿ಺ೃାఘೄೈ಺ೃ
ൌ

஻௔௡ௗ	ଶି஻௔௡ௗ	଺

஻௔௡ௗ	ଶା஻௔௡ௗ	଺
                        Eq. (4) 
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The Multi-resolution index of Valley Bottom Flatness (MrVBF) of Gallant and Dowling 
(2003) identifies areas that are low and flat relative to the surrounding topography. Large 
MrVBF values indicate broad and flat valley bottoms where the maximum value represents 
the broadest and flattest area in the landscape. Typically, values below 0.5 identity areas 
either too steep or too high to be valley bottoms (Gallant and Dowling 2003). The MrVBF 
is calculated from Digital Elevation Model (DEM) in an iterative process that is described 
in detail in Gallant and Dowling, 2003. 
Ticehurst et al. (2014) performed a thorough assessment of the MODIS OWL algorithm 
and compared the results with other MODIS flood products including the NASA NRT 
Global Flood Maps. The MODIS OWL algorithm has proved to be the best to date 
mapping tool for flood plains provided that the following precautions are followed:                                           
- Select MODIS OWL values of at least 6% water as it eliminates most commission 

errors and reduces noise in the data 
- Use daily MODIS OWL data of low view angle (range distance less than 1000 km) 

where possible 
- In some cases it may be necessary to exclude pixels having a low relative azimuth angle 

(i.e., the angle between the MODIS’ and sun’s azimuth angles) as this introduces 
commission errors in some spectrally dark pixels. However, a flood likelihood mask 
will also reduce the number of spectrally dark pixels which may be confused with 
water. 

Despite the above limitations, daily MODIS OWL water maps have already been used for 
wetland inundation mapping (Chen et al., 2013), estimating overbank flood recharge 
(Doble et al., 2014), as well as assisting in the calibration of hydrodynamic models at 
different stages of a flood event (Karim et al., 2013), all with varying degrees of success. 
When compared to upstream and downstream flow measurements for the Fitzroy River and 
Macquarie Marshes (both in Australia) during a large flood event, the daily MODIS OWL 
water extent shows temporal changes as expected (Ticehurst et al., 2013).                                                          

Ticehurst et al. (2013) and Chen et al. (2013) have shown that the MODIS OWL can 
effectively map medium to large water features when compared to an equivalent Landsat 
water map, but lacks the detail around the edge of a flood or along narrow water features 
where it tends to underestimate the water extent. Ticehurst et al. (2014) proved that the 
MODIS OWL is better at identifying fine water features and open water bodies with 
MODIS data than the commonly used modified NDWI by Xu, 2006.                                                                  

2.2. Study Area: 

The Roseires Dam is located on the Blue Nile at 11°47'54.45"N and 34°23'15.51"E. The 
reservoir extends for about 52km upstream the dam and the estimated maximum storage 
was about 3 km3 before being heightened in 2012. The water level and storage in the 
reservoir vary significantly during the year reaching its maximum storage in October and 
November and is almost dry in August. The surface area corresponding to the 3 km3 storage 
is about 290km2. All the available data for the reservoir are obtained from the Nile Decision 
Support System (Nile DSS) for the period before 2012 (before the dam being heightened). 
In this study, the developed methodology shall be applied to obtain a time series for 
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reservoir area variation for the Roseries reservoir from Feb-2000 till Dec-2014. Figure 1 
shows the extent of the study area covering the Roseires reservoir.  

         

Figure 1: Roseires Reservoir Study area 
2.3. Preprocessing MODIS Data 

In this study, the algorithm shall be applied to the 8-day composites products from both the 
TERRA (MOD) and AQUA (MYD) platforms. In the 8-day composite product, each pixel 
contains the best Level 2G observation during an 8-day period with respect to cloud cover, 
sensor to pixel distance, and aerosol loading. It has been proved in the literature that the 8-
day composite products can still describe the dynamics of fast moving flood events when 
compared to the daily products but with the benefit of decreasing cloud cover to a great 
extent (Ticehurst, 2013). Bands 1 and 2 are obtained at 250m resolution from MOD09Q1 
and MYD09Q1 products for the TERRA and Aqua platforms respectively. Similarly, the 
remaining bands needed for calculating the OWL algorithm are obtained at 500m resolution 
from the MOD09A1 and MYD09A1 products. All tiles covering the study area are 
downloaded as per Table 1.                                                                                                                    
Table 1: Downloaded MODIS tiles for the study area (Collection 5) 

Product Start Date End Date 
Number of 
Downloaded Tiles 

MOD09A1 (Terra) 26-2-2000 31-12-2014 682 

MYD09Q1 (Terra) 26-2-2000 31-12-2014 682 

MYD09A1 (Aqua) 1-1-2003 31-12-2014 553 

MYD09Q1 (Aqua) 1-1-2003 31-12-2014 553 
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The downloaded tiles were projected to UTM-36N-WGS84 projection, mosaicked and 
cropped to study area boundary, and resampled to 250m resolution using the MODIS MRT 
Reprojection Tool provided by NASA, LPDAAC. The resampling method used was the 
nearest neighbor to not alter the original pixel data values.          
An important and critical step in the preprocessing stage of the data is to remove all pixels 
that contain cloud, cloud shadows, high aerosol loading, dead or noisy detectors, or missing 
data. All MODIS products are packed with science data sets that include quality assurance 
data both for data state and reflectance bands quality. The quality assurance data are loaded 
per pixel and converted to binary form and are then interpreted based on the QA MODIS 
science data set manual. Only pixels meeting the above mentioned criteria are considered 
for calculations. The bit-packing process was performed in Python using libraries from 
Pymasker tool available as open source from Github. Figure 2 below shows an example for 
data mask created for tile MOD09A1.2000233.hdf.                                                                                          

2.4.Calculating MrVBF Index: 

The Shuttle Radar Topography Mission SRTM 1 arc second (approximately 30m 
resolution) DEM has been recently released for the tropical regions all around the world 
including our study area. The SRTM 1” DEM is considered a more detailed and superior 
product to the famously known SRTM 3” (approximately 90m resolution) as the latter is 
either subsampled or averaged form the first. SRTM 1” data are distributed by LPDAAC 
into tiles each covers an area of 1o X 1o.  Tiles covering the study area are downloaded and 
merged using GIS software package.                           
 

 

Figure 2: (a) Original RGB (1:4:3) composite for tile MOD09A1.2000233.hdf, and (b)  
The created data mask where black color denotes the excluded pixels from the calculations 
The MrVBF index has been calculated using the  System for Automated Geoscientific 
Analyses SAGA; a free open source GIS tools that is widely used by the GIS and remote 
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sensing research community. The SRTM 1” DEM is input to the model while setting the 
default values for all other parameters as in the Table 2 below (Guershmann, 2011). The 
index has been calculated at 1” resolution first and is then resampled to 250m resolution to 
match that of the MOD/MYD09A1 resampled products.  
Table 2: Parameters for calculating MrVBF 

Parameter Range Default Value 

Initial Threshold for Slope 0 – 100 16 

Threshold for Elevation Percentile (Lowness) 0 - 1.0 0.4 

Threshold for Elevation Percentile (Upness) 0 – 1.0 0.35 

Shape Parameter for Slope NA 4.0 

Shape Parameter for Elevation Percentile NA 3.0 

Maximum resolution as percentage of the 
diameter of the DEM. 

0 – 100 100 

Figure 3 below shows the merged SRTM 1” DEM and the calculated MrVBF values for the 
study area. It is clear that flat areas hold higher values of MrVBF and this makes them more 
subject to ponding in the MODIS OWL algorithm.  

 

(a) 
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Figure 3: (a) SRTM 1”DEM and (b) Calculated MrVBF values resampled at 250m 
  

 

 

 

 

 

 

 

 

Figure 4: Spatial Model for Calculating MODIS OWL 

 

(b) 
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2.5.Calculating MODIS OWL: 

After masking only the valid MODIS pixels and calculating the MrVBF values, ERDAS 
Imagine (version 2013) image processing software is used to calculate the MODIS OWL as 
in equations 1 through 3. The MODIS OWL is not included inside the spectral indices 
under the unsupervised classification module of ERDAS Imagine. As such, the spatial 
model editor has been used to create a workflow to calculate the MODIS OWL inside 
ERDAS Imagine. Figure 4 shows a schematic of the spatial  model used to calculate 
MODIS OWL inside ERDAS Imagine.                                 
The spatial model is divided into 6 parts as follows: 

- First, the raster file is loaded into the model through the raster input operator.  
- In part I the NDWI index is calculated by using bands 2 and 6 of the loaded image. The 

NDWI is also checked not to have outliers and is always between -1 and +1, 
- Similarly, in part II, the NDVI is calculated using bands 1 and 2 of the loaded image 

and the output is also checked to be within the -1 to +1 range. 
- In parts III and IV, the SWIR bands (6 and 7) and the MrVBF index are loaded to the 

model.     
- In Part V the water fraction is calculated by applying equation 1, and finally 
- In part VI the data is masked by the quality assurance mask previously created by 

Pymasker. Pixels that are to be excluded due to quality issues are given a “NO DATA” 
value in the output raster to discriminate it from other pixels. 

- The output raster is containing the MODIS OWL water fraction for each pixel is then 
saved in a new file. 

All the above should be repeated for all 682 downloaded scenes of MOD09A1 and all 553 
scenes for MYD09A1. The process has to be automated. Starting ERDAS Imagine version 
2013, it is possible to create and execute a spatial model within a python scripting language 
(Python Scripting with ERDAS Imaging Spatial Modeler, Intergraph). A python script is 
written to calculate the run the MODIS OWL spatial model in a batch mode for all scenes 
and automatically saves the output raster files. The script uses ERDAS Imagine Spatial 
Modeler libraries to load the model, prepare its input data, and write its output. The python 
script is combined with the script that creates the data mask to save time loading the 
images. The output raster files still contain areas of NODATA after applying the data 
quality assurance mask. The following section discusses how to fill in many of the 
NODATA cells in MOD products with MYD data and how to interpolate and fill the rest.                                

2.6.Creating a combined product and gap filling: 

As discussed earlier, one of the major challenges that hinder the use of data from optical 
sensors in flood plain delineation is cloud cover. In order to overcome this limitation, the 
following procedure is adopted in this study: 
- MODIS OWL is calculated for all downloaded tiles from both the Aqua and Terra 

platforms, each has its own data mask and NODATA cells as discussed in the previous 
section. Values calculated from the Terra platform files shall be named MOD09OWL 
and those calculated from Aqua platform file shall be named MYD09OWL. 
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Figure 5: Calculated MCDOWL for tile A2003273.hdf 
- Since both Terra and Aqua platforms acquire images for the study area at different 

times (10:00am and 2:00pm respectively) everyday; and since we are also using the 8-
day composite products of each platform (MOD/MYD09A1) in the calculations; then 
there is a large chance that pixels marked as “NODATA” in the 8-day composite of the 
Terra platform will contain valid readings in the 8-day composite of the Aqua platform. 

- It is decided to create a combined product of Aqua and Terra platforms for the 
calculated values of OWL. NODATA cells in MOD09OWL are replaced with 
respective values from their MYD09OWL counterpart whenever applicable. The 
combined product shall be named MCD09OWL. Ticehurst et al, 2014 and Guerschman 
et al, 2011 followed a similar procedure using the MODIS daily products 
MOD/MYD09GA. 

The average cloud cover percentage in the MOD and MYD products are 13.08% and 
20.86% respectively. After creating the combined product, the average cloud cover 
decreased to 7.52% and the great thing is that gaps are filled with true observations. Figure 
5 below compares the cloud cover percentage for the three products for 1800 days starting 
Feb-2000.  
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Figure 6: Average Cloud Cover Percentage 
As shown in figure 6, the cloud cover is concentrated during the rainy season especially 
during the rising stage of flood where maximum inundation of water is expected. The 
combined MCDOWL product still contains significant areas (up to 50% of the scene) 
covered by clouds that need to be filled.                                         
Weiss et al, 2014 developed a new gap filling algorithm that can be used to fill in large 
continuous patches of missing data and is optimized for use in time series applications. The 
method was also developed and tested on MODIS data on continental scale that makes the 
method suitable for our application. The method succeeded in filling large gaps over Africa 
with R2 of more than 0.87 (Weiss et al., 2014). The method works as follows:                                                    
- The method depends on calculating mean raster for all the time series  
- Calculates, for each gap cell, an average of the ratios between valid values of 

neighboring cells in the current image and the mean raster (Nto / Nmean).  
- The average ratio is multiplied by the mean value of the gap cell itself (Gmean) to get the 

fill value F as in equation 4 below.  
- The current fill value is used to fill the next cell 
- This is done in 8 passes and the median is then calculated 
- A python code has been written to automate the process of creating the combined 

product and gap filling 

ܨ ൌ
∑ ቀீ೘೐ೌ೙ൈ

ಿ೟బ
ಿ೘೐ೌ೙

ቁభ….೙

௡
               Eq. (4) 
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Figure 7: Gap filling Algorithm after Weiss et al., 2014 

 

Figure 8: Gapfilled Combined MCDOWL for tile A2003273.hdf 

2.7.Calibration and Verification: 
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In order to convert the MODIS OWL water fraction maps to water - non water thematic 
maps, we need to determine the threshold value (percentage) above which a pixel is 
considered to be wet. The threshold value is usually determined using ground survey data 
of areas that are known to be water bodies. These surveyed patches (ground truth data) 
should be laid over the MODIS OWL maps and the optimum water fraction percentage 
could be found that yields the surveyed wet areas as wet. This process should be repeated 
over the dry and wet season due to different characteristics of wet pixels all the year round.                              
Due to lack of field data and limited accessibility, ground truth data are not available for the 
study area to help calibrating the MODIS OWL method to identify water bodies. Instead, 
high resolution satellite images shall be used to determine the wet areas at specific time 
stamps and these images shall act as ground truth data. Ticehurst et al., 2013 used higher 
spatial resolution Landsat data as “ground truth” for assessing how well the MODIS 
products could map flood extent in the lower Balonne floodplain, Fitzroy River and 
Macquarie Marshes during a flood event. Also, Guerchmann et al, 2011 used water maps 
calculated from Landsat data to count and calculate the water fraction in a MODIS pixel.                                  
In this study, Landsat data is chosen to provide ground truth data for MODIS OWL as 
Landsat forms the most consistent dataset that covers all the downloaded tiles since year 
2000 till today and it has been used extensively in the literature for detecting water bodies. 
The procedure is summarized as follows:                                                
- Landsat and MODIS images for the study area are selected carefully to have similar 

acquisition times (as much as possible) and to have common cloud free areas. 
- MODIS data are available 2 times daily (from both platforms) while Landsat revisit 

time is 8-16 days. Daily MODIS surface reflectance products (MOD/MYD09GA) are 
used in the verification process instead of the 8-day composites in order to match 
acquisition times more accurately. 

- Landsat 7 ETM+ data after May, 2003 are avoided in the selection process due to the 
failure of Scan Line Corrector (SLC). Images with SLC turned off have many missing 
data pixels that shall degrade the calibration process. 

- Due to MODIS swath distribution and orbit schedule with respect to Landsat 8 orbit, 
same day coverage of both daily MODIS and Landsat 8 is not available for the study 
area. As such, averaging of the previous and the following day MODIS scenes are 
considered in the calibration. 

- MODIS OWL is calculated for the selected daily MOD/MYD09GA scenes in the same 
way as has been done with the 8-day composites before.     

- Water maps are calculated from Landsat image using the Modified Normalized 
Difference Water Index (mNDWI) developed by Xu et al, 2006. Pixels having values 
more than -0.1 are considered wet (Ticehurst, 2015). 

- MODIS images are then geo-referenced accurately to the Landsat water maps. 
- For each Landsat / MODIS pair, a threshold value is iteratively applied to the MODIS 

OWL water fraction (masking pixels with values higher than that threshold as water), 
and agreement with the respective Landsat map is calculated in terms of kappa statistics 
(Landis and Koch, 1977). Several values for the water fraction threshold are applied till 
reaching the value that provides maximum agreement (highest kappa value) with 
Landsat water maps. 
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- The above process shall be repeated over several selected pairs of Landsat/MODIS 
scenes covering the dry and wet season and an overall average of the water fraction 
threshold that provides the best agreement is calculated. 

- The calculated threshold is then applied to the combined MODIS OWL scenes to get 
water maps of the study area.  

Tables 3 below shows the image pairs used in the verification process along with their 
acquisition time and optimum kappa statistic value. It is found that the maximum 
agreement between Landsat and MODIS scenes occurs at OWL threshold of 20%. The best 
agreement varies between 0.751 and 0.916 which is considered substantial to strong 
agreement (Landis and Koch, 1979). The optimum OWL threshold is almost constant 
between the dry and wet seasons. Figure 9 shows the agreement between Landsat and 
MODIS scenes for pair 3.                                                                       

 

Figure 9: Agreement for Pair 3. Red color represents pixels that are considered wet in both 
Landsat and MODIS images and Blue represents pixels that are considered dry in both 
scenes. Green represents pixels that are considered wet in Landsat scene only, while Cyan 
represents pixels that are considered wet only in MODIS scene. White represents missing 
data due to cloud cover.                                                                
Table 3: Verification and Kappa Statistics 
Pair 

No. 

Landsat MODIS Kappa 

Scene ID Date Scene ID Date 



     

٦٠ 
 

Pair 

No. 

Landsat MODIS Kappa 

Scene ID Date Scene ID Date 

1 LE7171052-
2000281 

(Landsat7) 

7-10-2000 
7:48am 

MOD09GA.A2000281.h2
1v07 (TERRA) 

MOD09GQ.A2000281.h2
1v07 (TERRA) 

7-10-2000 
10:30am 

0.88 

2 LE717205220
02357 

(Landsat7) 

22-12-2002 

7:52am 

MOD09GA.A2002357.h2
1v07 (TERRA) 

MOD09GQ.A2002357.h2
1v07 (TERRA) 

MYD09GA.A2002357.h2
1v07 (AQUA) 

MYD09GQ.A2002357.h2
1v07 (AQUA) 

22-12-2002 

10:30am 

 

 

22-12-2002 

2:00pm 

0.916 

3 LC817205220
14222 

(Landsat8) 

10-8-2014 

8:04am 

MOD09GA.A2014221.h2
1v07 (TERRA) 

MOD09GQ.A2014221.h2
1v07 (TERRA) 

MYD09GA.A2014221.h2
1v07 (AQUA) 

MYD09GQ.A2014221.h2
1v07 (AQUA) 

MOD09GA.A2014223.h2
1v07(TERRA) 

MOD09GQ.A2014223.h2
1v07 (TERRA) 

MYD09GA.A2014223.h2
1v07 (AQUA) 

MYD09GQ.A2014223.h2
1v07 (AQUA) 

9-8-2014 

10:30am 

 

 

9-8-2014 

2:00pm 

 

 

11-8-2014 

10:30am 

 

 

11-8-2014 

0.751 
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Pair 

No. 

Landsat MODIS Kappa 

Scene ID Date Scene ID Date 

2:00pm 

 

3. Results: 

The developed workflow succeeded in generating water fraction maps without gaps for the 
study area for almost 5 years starting Feb 2000 till Dec 2014. MODIS OWL algorithm 
proved high efficiency in detecting water bodies under mixed inundation. The Roseires 
reservoir gets almost dry in June and reaches its maximum inundation in October almost 
each year. The MODIS OWL algorithm succeeded in detecting variation in water 
inundation all the year round providing maximum separation between water bodies and the 
surroundings. Figure 10 shows the mean raster of selected days at mid of January, March, 
June, August, October, and December for the period from Feb-2000 till Dec-2011 (before 
heightening of the Dam) while Figure 11 shows the mean raster for the same days but for 
the period from Jan 2012 till Dec-2014. The effect of heightening the Dam is clearly 
demonstrated.                               
Water fraction maps are then converted to thematic water maps by applying the optimum 
threshold of 20% where pixels having water fraction more than 20% are considered as 
inundated. Reservoir surface area can be calculated from the water maps for the whole time 
series. The variation of reservoir area with time for the period from Jan-3003 till Dec-2007 
is available from the Nile DSS database. Reservoir area calculated from the developed 
algorithm show very high agreement with the measured areas as seen from Figure 12.                                       
It is clear that both actual measurements and calculated areas agree to a great extent during 
the rising stage of the flood and they almost reach the same peak inundation extent. 
However, during the dry period, the agreement notably decreases. This is because there are 
areas and patches that remain wet during the dry season that are not connected to the 
reservoir outlet (Figure 13). These areas are already deducted from the reservoir rating 
curve according to the Nile DSS database (considered as dead storage). This explains why 
areas extracted from the MODIS OWL algorithm are larger than measurements during the 
dry season.                                                        
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Figure 10: Mean Raster for OWL water fraction (2000-2011) 
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Figure 11: Mean Raster for OWL water fraction (2012-2014)  

 

Figure  12: Comparison between Extracted Reservoir Area from applying the new 
methodology using OWL threshold at 20% and actual measurements for the period from 
2003-2007. 

15‐Oct  10‐Dec
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Figure 13: Thematic water map for the Roseires Reservoir on 12-8-2003 shows 
disconnected patches of inundated areas during the dry season. Water presented as deep 
blue over the background map. 
After heightening the Dam in 2012, the extracted reservoir areas are highly increased as in 
Figure 14 below. The area reached almost 650 square kilometers its maximum inundation.  

 

Figure  14: Extracted Reservoir Area from applying the new methodology using OWL 
threshold at 20% for the period from 2009-2014. 
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4. Conclusions: 

The developed methodology proved to be very effective in mapping water bodies under 
mixed inundation. The methodology used the MODIS OWL technique for calculating water 
fraction in each pixel and it proved to provide maximum separation between inundated 
pixels and the surroundings. Cloud cover; which is considered one of the greatest 
challenges that limits using remote sensing data in tropical regions, is overcome by creating 
a combined product from two MODIS platforms and using a robust gap filling technique to 
fill the remaining gaps in data with a relative high accuracy. The workflow; once 
calibrated; is fully automated and require minimum human input. The developed workflow 
succeeded in creating consistent spatial and temporal maps when applied to the Roseires 
reservoir. The generated water maps matched the ground measurements to a great extent 
besides having a temporal frequency of 8-days which enables close monitoring to water 
bodies. The workflow need to be tested and applied on seasonal wetlands in future studies. 
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